The load-transfer method as a tool for determining the load-displacement curve of piles

Authors

  • Juraj Chalmovský Brno University of Technolohy, Faculty of Civil Engineering, Veveří 95, 602 00 Brno, Czech Republic
  • Václav Račanský Keller Grundbau Ges.mbH, Guglgasse 15, BT4a/3. OG, 1110 Wien, Austria
  • Pavel Koudela Brno University of Technolohy, Faculty of Civil Engineering, Veveří 95, 602 00 Brno, Czech Republic
  • Karel Zdražil Brno University of Technolohy, Faculty of Civil Engineering, Veveří 95, 602 00 Brno, Czech Republic; GEOSTAR, spol. s. r. o., Tuřanka 111, 627 00 Brno, Czech Republic

DOI:

https://doi.org/10.14311/AP.2024.64.0341

Keywords:

load-transfer method, deep foundations, pile, ultimate shaft friction, base resistance, load-displacement curve, effective stress

Abstract

The paper presents two applications (software packages) in which the load-transfer method is used for axially loaded Kelly drilled bored piles and displacement ductile iron piles. In the first, the ultimate friction is related to the effective stress via the so-called β method. The β method is refined into three stages to cover the variety of soils typical of Central Europe. For the driven piles, a different approach is presented in which the ultimate shaft friction is related to the reference hammering time. The recorded hammering time profile is fed directly into the software based on the load-transfer method. Analyses of five loading tests are presented proving that the load transfer method in combination with the β method or the recorded hammering time profile is able to compute the load-displacement curve of both replacement and displacement piles with a reasonable accuracy in various geological conditions.

Downloads

Download data is not yet available.

References

H. G. Poulos, E. H. Davis. Pile Foundation Analysis and Design. John Wiley and Sons, New York, USA, 1980.

H. B. Seed, L. C. Reese. The action of soft clay along friction piles. Transactions of the American Society of Civil Engineers 122(1):731–754, 1957. https://doi.org/10.1061/TACEAT.0007501

E. S. B. Reddy, M. O’Reilly, D. Chapman. A software to predict the behaviour of tension piles. Computers & Structures 62(4):653–658, 1997. https://doi.org/10.1016/S0045-7949(97)80002-3

E. S. B. Reddy, M. O’Reilly, D. N. Chapman. Modified T-Z model – a software for tension piles. Computers & Structures 68(6):613–625, 1998. https://doi.org/10.1016/S0045-7949(98)00089-3

M. F. Randolph, C. P. Wroth. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division 104(12):1465–1488, 1978. https://doi.org/10.1061/AJGEB6.0000729

American Petroleum Institute. RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms – working stress design, 2003.

R. Frank, S.-R. Zhao. Estimation à partir des paramètres pressiométriques de l’enfoncement sous charge axiale de pieux forés dans des sols fins [In French; Estimation of parameters from pressuremeter test for determination of displacement of bored piles in fine soils]. Bulletin de Liaison des Laboratoires des Ponts et Chaussées (119):17–24, 1982.

W. G. K. Fleming. A new method for signle pile settlement prediction and analysis. Géotechnique 42(3):411–425, 1992. https://doi.org/10.1680/geot.1992.42.3.411

Q.-q. Zhang, Z.-m. Zhang. A simplified nonlinear approach for single pile settlement analysis. Canadian Geotechnical Journal 49(11):1256–1266, 2012. https://doi.org/10.1139/t11-110

C. Bohn, A. L. dos Santos, R. Frank. Development of axial pile load transfer curves based on instrumented load tests. Journal of Geotechnical and Geoenvironmental Engineering 143(1), 2017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001579

Keller Grundbau Ges.mbH, 2024. [2024-04-26]. https://www.kellergrundbau.at

J. Zahrada. Loading test of the pile – report, pile 1 200 mm, D 47, SO 210 [In Czech]. Special foundation centre SKANSKA a. s., 2005. Unpublished.

J. Chalmovský. Application of the load-transfer method for predicting the behaviour of deep foundations in the Czech Republic [In Czech], 2021. [2024-09-05]. https://geotech.fce.vutbr.cz/wpcontent/uploads/sites/17/2021/01/Vyu%C5%BEit%C3%AD_MPF_%C4%8CR.pdf

German Geotechnical Society. Recommendations on piling (EA-Pfähle). Wiley, Berlin, Germany, 2013. https://doi.org/10.1002/9783433604113

J. Hulla, P. Turček. Zakladanie stavieb [In Slovak; Foundation of structures]. Jaga group, 1998.

J. Burland. Shaft friction of piles in clay – a simple fundamental approach. Ground Engineering 6(3):30–42, 1973.

F. K. Chin. The inverse slope as a prediction of ultimate bearing capacity of piles. In Proceedings of the 3rd Southeast Asian Conference on Soil Engineering, pp. 83–91. 1972.

F. H. Kulhawy, P. Mayne. Manual on Estimating Soil Properties for Foundation Design. Cornell University, Geotechnical Enineering Group, Ithaca, New York, USA, 1990.

Downloads

Published

2024-09-08

Issue

Section

Articles

How to Cite

Chalmovský, J., Račanský, V., Koudela, P., & Zdražil, K. (2024). The load-transfer method as a tool for determining the load-displacement curve of piles. Acta Polytechnica, 64(4), 341-349. https://doi.org/10.14311/AP.2024.64.0341