Numerical solution for stochastic Volterra-Fredholm integral equations with delay arguments

Authors

  • Kutorzi Edwin Yao Shandong University, Institute for Financial Studies, 250100 Jinan, China; Shandong University, School of Mathematics, 250100 Jinan, China
  • Yuxue Zhang Shandong University, Institute for Financial Studies, 250100 Jinan, China; Shandong University, School of Mathematics, 250100 Jinan, China
  • Yufeng Shi Shandong University, Institute for Financial Studies, 250100 Jinan, China; Shandong University, School of Mathematics, 250100 Jinan, China

DOI:

https://doi.org/10.14311/AP.2024.64.0128

Keywords:

stochastic Volterra-Fredholm integral equations, block-pulse functions, Itô integral, delay operational matrix, error analysis

Abstract

We present a method for computing the stochastic operational matrix of integration to advance the study of stochastic Volterra-Fredholm integral equations (SVFIEs) based on delay arguments. First, the method evaluates the combined effects of the delay and its parameters on the accuracy improvement of the convergence rate. Our results can be applied to SVFIEs, with the operational delay matrices of the block pulse function simplified to algebraic ones. Numerical calculations were performed on a PC using Python 3 programs. Results also demonstrate the accuracy of approximate solutions; arithmetic operations are carried out without the need for derivation or integration.

Downloads

Download data is not yet available.

References

H. K. Dawood. Computational block-pulse functions method for solving Volterra integral equations with delay. Journal of University of Babylon for Pure and Applied Sciences 27(1):32–42, 2019. https://doi.org/10.29196/jubpas.v27i1.2063

C. Kasumo. On the approximate solutions of linear Volterra integral equations of the first kind. Applied Mathematical Sciences 14(3):141–153, 2020. https://doi.org/10.12988/ams.2020.912176

K. Maleknejad, P. Torabi, S. Sauter. Numerical solution of a non-linear Volterra integral equation. Vietnam Journal of Mathematics 44:5–28, 2016. https://doi.org/10.1007/s10013-015-0149-8

E. Babolian, Z. Masouri. Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions. Journal of Computational and Applied Mathematics 220(1–2):51–57, 2008. https://doi.org/10.1016/j.cam.2007.07.029

T. S. Gutleb, S. Olver. A sparse spectral method for Volterra integral equations using orthogonal polynomials on the triangle. SIAM Journal on Numerical Analysis 58(3):1993–2018, 2020. https://doi.org/10.1137/19M1267441

Y. Hamaguchi. On the maximum principle for optimal control problems of stochastic Volterra integral equations with delay. Applied Mathematics & Optimization 87:42, 2023. https://doi.org/10.1007/s00245-022-09958-w

K. Maleknejad, K. Mahdiani. Solving nonlinear mixed Volterra-Fredholm integral equations with two dimensional block-pulse functions using direct method. Communications in Nonlinear Science and Numerical Simulation 16(9):3512–3519, 2011. https://doi.org/10.1016/j.cnsns.2010.12.036

M. Rabbani, K. Nouri. Solution of integral equations by using block-pulse functions. Mathematical Sciences Quarterly Journal 4(1):39–48, 2010.

S. H. Esmail Babolian, Zahra Masouri. New direct method to solve nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix with block-pulse functions. Progress In Electromagnetics Research B 8:59–76, 2008. https://doi.org/10.2528/PIERB08050505

Y. Shi, T. Wang. Solvability of general backward stochastic Volterra integral equations. Journal of the Korean Mathematical Society 49(6):1301–1321, 2012. https://doi.org/10.4134/JKMS.2012.49.6.1301

A. A. Khidir. A numerical technique for solving Volterra-Fredholm integral equations using Chebyshev spectral method. Ricerche di Matematica 2022. https://doi.org/10.1007/s11587-022-00692-7

M. Samar, K. E. Yao, X. Zhu. Numerical solution of nonlinear backward stochastic Volterra integral equations. Axioms 12(9):888, 2023. https://doi.org/10.3390/axioms12090888

A. Bellour, M. Bousselsal. A Taylor collocation method for solving delay integral equations. Numerical Algorithms 65(4):843–857, 2014. https://doi.org/10.1007/s11075-013-9717-8

Q. Zhu, T. Huang. Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion. Systems & Control Letters 140:104699, 2020. https://doi.org/10.1016/j.sysconle.2020.104699

R. Song, B. Wang, Q. Zhu. Stabilization by variable-delay feedback control for highly nonlinear hybrid stochastic differential delay equations. Systems & Control Letters 157:105041, 2021. https://doi.org/10.1016/j.sysconle.2021.105041

M. Nouri, K. Maleknejad. Numerical solution of delay integral equations by using block pulse functions arises in biological sciences. International Journal of Mathematical Modelling & Computations 6(3):221–232, 2016.

F. Toutounian, E. Tohidi, A. Kilicman. Fourier operational matrices of differentiation and transmission: Introduction and applications. Abstract and Applied Analysis 2013:198926, 2013. https://doi.org/10.1155/2013/198926

J. Zhang, Y. Li, J. Xie. Numerical simulation of fractional control system using Chebyshev polynomials. Mathematical Problems in Engineering 2018:4270764, 2018. https://doi.org/10.1155/2018/4270764

F. Stenger. Numerical Methods Based on Sinc and Analytic Functions, vol. 20. Springer New York, 1993. ISBN 978-1-4612-7637-1. https://doi.org/10.1007/978-1-4612-2706-9

Z. Jiang, W. Schaufelberger. Block Pulse Functions and Their Applications in Control Systems. Springer-Verlag, Berlin, 1992. ISBN 978-3-540-55369-4. https://doi.org/10.1007/BFb0009162

G. P. Rao. Piecewise Constant Orthogonal Functions and Their Application to Systems and Control. Springer-Verlag, Berlin, 1983. ISBN 978-3-540-12556-3. https://doi.org/10.1007/BFb0041228

F. C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial College Press, 3rd edn., 2012. ISBN 978-1-84816-831-2. https://doi.org/10.1142/p821

M. Khodabin, K. Maleknejad, M. Rostami, M. Nouri. Numerical approach for solving stochastic Volterra-Fredholm integral equations by stochastic operational matrix. Computers & Mathematics with Applications 64(6):1903–1913, 2012. https://doi.org/10.1016/j.camwa.2012.03.042

M. A. Hussein, H. K. Jassim. Analysis of fractional differential equations with Antagana-Baleanu fractional operator. Progress in Fractional Differentiation and Applications 9(4):681–686, 2023. https://doi.org/10.18576/pfda/090411

H. K. Jassim, M. A. Hussein, M. R. Ali. An efficient homotopy permutation technique for solving fractional differential equations using Atangana-Baleanu-Caputo operator. AIP Conference Proceedings 2845(1):060008, 2023. https://doi.org/10.1063/5.0157148

V. Horvat. On collocation methods for Volterra integral equations with delay arguments. Mathematical Communications 4(1):93–109, 1999.

M. Mosleh, M. Otadi. Least squares approximation method for the solution of Hammerstein-Volterra delay integral equations. Applied Mathematics and Computation 258:105–110, 2015. https://doi.org/10.1016/j.amc.2015.01.100

J.-H. He, M. H. Taha, M. A. Ramadan, G. M. Moatimid. Improved block-pulse functions for numerical solution of mixed Volterra-Fredholm integral equations. Axioms 10(3):200, 2021. https://doi.org/10.3390/axioms10030200

Downloads

Published

2024-05-07

How to Cite

Yao, K. E., Zhang, Y., & Shi, Y. (2024). Numerical solution for stochastic Volterra-Fredholm integral equations with delay arguments. Acta Polytechnica, 64(2), 128–141. https://doi.org/10.14311/AP.2024.64.0128

Issue

Section

Articles