Empowering IoT: leveraging data sensor communication with LoRAWAN in diverse environments

Authors

  • Noprianto Noprianto State Polytechnic of Malang, Department of Information Technology, Malang, East Java 65141, Indonesia
  • Habibie Ed Dien State Polytechnic of Malang, Department of Information Technology, Malang, East Java 65141, Indonesia
  • Septian Enggar Sukmana State Polytechnic of Malang, Department of Information Technology, Malang, East Java 65141, Indonesia
  • Fayyadh Al Baity State Polytechnic of Malang, Department of Information Technology, Malang, East Java 65141, Indonesia
  • Mustika Mentari State Polytechnic of Malang, Department of Information Technology, Malang, East Java 65141, Indonesia

DOI:

https://doi.org/10.14311/AP.2024.64.0539

Keywords:

internet of things, communication technology, long-range, data transmission, line of sight, non-line of sight

Abstract

The Internet of Things (IoT) connects countless devices, such as sensors and actuators, necessitating an efficient long-range communication technology. Low Power Wide Area Network (LPWAN) solutions, such as LoRAWAN, SIGFOX, and NB-IoT, address this demand. LoRAWAN, known for its low power consumption, excels in Line of Sight (LOS) conditions, offering an effective long-range wireless communication. It’s ideal for monitoring open areas. In Non-Line of Sight (NLOS) scenarios, LoRAWAN provides wide coverage and energy efficiency, though the signal quality may slightly decline. This research tests LoRAWAN’s performance for sensor data communication both inside multi-story buildings (up to 8 storeys) and outside. The results show successful data transmission in both scenarios, including up to 2.60 km with a 35 dBi outdoor antenna.

Downloads

Download data is not yet available.

References

G. Yascaribay, M. Huerta, M. Silva, R. Clotet. Performance evaluation of communication systems used for internet of things in agriculture. Agriculture 12(6):786, 2022. https://doi.org/10.3390/AGRICULTURE12060786

H. Klaina, I. P. Guembe, P. Lopez-Iturri, et al. Analysis of low power wide area network wireless technologies in smart agriculture for large-scale farm monitoring and tractor communications. Measurement 187:110231, 2022. https://doi.org/10.1016/J.MEASUREMENT.2021.110231

J. Arshad, M. Aziz, A. A. Al-Huqail, et al. Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. Sustainability 14(2):827, 2022. https://doi.org/10.3390/SU14020827

G. Codeluppi, A. Cilfone, L. Davoli, G. Ferrari. LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors 20(7):2028, 2020. https://doi.org/10.3390/S20072028

N. C. Gaitan. A long-distance communication architecture for medical devices based on LoRaWAN protocol. Electronics 10(8):940, 2021. https://doi.org/10.3390/ELECTRONICS10080940

G. Pradeepkumar, S. S. Rahul, N. Sudharsanaa, et al. A smart helmet for the mining industry using LoRaWAN. Journal of Physics: Conference Series 1916(1):012089, 2021. https://doi.org/10.1088/1742-6596/1916/1/012089

S. Ali, T. Glass, B. Parr, et al. Low cost sensor with IoT LoRaWAN connectivity and machine learning-based calibration for air pollution monitoring. IEEE Transactions on Instrumentation and Measurement 70:5500511, 2021. https://doi.org/10.1109/TIM.2020.3034109

D. Puspitasari, Noprianto, M. A. Hendrawan, R. A. Asmara. Development of smart parking system using internet of things concept. Indonesian Journal of Electrical Engineering and Computer Science 24(1):611–620, 2021. https://doi.org/10.11591/IJEECS.V24.I1.PP611-620

L. G. Manzano, H. Boukabache, S. Danzeca, et al. An IoT LoRaWAN network for environmental radiation monitoring. IEEE Transactions on Instrumentation and Measurement 70:6008512, 2021. https://doi.org/10.1109/TIM.2021.3089776

T. Porselvi, C. S. S. Ganesh, B. Janaki, et al. IoT based coal mine safety and health monitoring system using LoRaWAN. 2021 3rd International Conference on Signal Processing and Communication (ICPSC) pp. 49–53, 2021. https://doi.org/10.1109/ICSPC51351.2021.9451673

W. Ingabire, H. Larijani, R. M. Gibson, A.-U.-H. Qureshi. LoRaWAN based indoor localization using random neural networks. Information 13(6):303, 2022. https://doi.org/10.3390/INFO13060303

W. A. Jabbar, T. Subramaniam, A. E. Ong, et al. LoRaWAN-based IoT system implementation for long-range outdoor air quality monitoring. Internet of Things 19:100540, 2022. https://doi.org/10.1016/J.IOT.2022.100540

S. R. J. Ramson, S. Vishnu, A. A. Kirubaraj, et al. A LoRaWAN IoT-enabled trash bin level monitoring system. IEEE Transactions on Industrial Informatics 18(2):786–795, 2022. https://doi.org/10.1109/TII.2021.3078556

R. Kan, M. Wang, Z. Zhou, et al. Acoustic signal NLOS identification method based on swarm intelligence optimization SVM for indoor acoustic localization. Wireless Communications and Mobile Computing 2022:5210388, 2022. https://doi.org/10.1155/2022/5210388

M. Ballerini, T. Polonelli, D. Brunelli, et al. NB-IoT versus LoRaWAN: An experimental evaluation for industrial applications. IEEE Transactions on Industrial Informatics 16(12):7802–7811, 2020. https://doi.org/10.1109/TII.2020.2987423

A. Lombardo, S. Parrino, G. Peruzzi, A. Pozzebon. LoRaWAN versus NB-IoT: Transmission performance analysis within critical environments. IEEE Internet of Things Journal 9(2):1068–1081, 2022. https://doi.org/10.1109/JIOT.2021.3079567

C. Milarokostas, D. Tsolkas, N. Passas, L. Merakos. A comprehensive study on LPWANs with a focus on the potential of LoRa/LoRaWAN systems. IEEE Communications Surveys & Tutorials 25(1):825–867, 2023. https://doi.org/10.1109/COMST.2022.3229846

S. R. J. Ramson, W. D. León-Salas, Z. Brecheisen, et al. A self-powered, real-time, LoRaWAN IoT-based soil health monitoring system. IEEE Internet of Things Journal 8(11):9278–9293, 2021. https://doi.org/10.1109/JIOT.2021.3056586

Y. A. Al-Gumaei, N. Aslam, X. Chen, et al. Optimizing power allocation in LoRaWAN IoT applications. IEEE Internet of Things Journal 9(5):3429–3442, 2022. https://doi.org/10.1109/JIOT.2021.3098477

C. Bouras, A. Gkamas, V. Kokkinos, N. Papachristos. Performance evaluation of monitoring IoT systems using LoRaWan. Telecommunication Systems 79(2):295–308, 2022. https://doi.org/10.1007/S11235-021-00858-Y

V. K. Neitzel, J. Kniess. Implementation and performance evaluation of LoRaWAN in real environment of agriculture. In 48th Latin American Computing Conference (CLEI), pp. 1–10. IEEE, 2022. https://doi.org/10.1109/CLEI56649.2022.9959900

K. Teoh, M. H. M. Ghazali, W. Rahiman. An experimental performance evaluation of LoRa wireless communication in multistorey building with dynamic environment. In Control, Instrumentation and Mechatronics: Theory and Practice, vol. 921 of Lecture Notes in Electrical Engineering, pp. 581–590. Springer Nature Singapore, 2022. https://doi.org/10.1007/978-981-19-3923-5_50

R. D. Arian, I. W. Mustika, S. Sulistyo. Performance evaluation of LoRaWAN for smart shuttle bus system support in campus area. In 2nd International Conference on Intelligent Cybernetics Technology and Applications (ICICyTA), pp. 47–52. IEEE, 2022. https://doi.org/10.1109/ICICYTA57421.2022.10037934

P. D. P. Adi, I. Purnama, A. Mappadang, et al. Performance evaluation of LoRaWAN in pulse status monitoring with clustering of wireless sensor network. In International Conference of Science and Information Technology in Smart Administration (ICSINTESA), pp. 105–110. IEEE, 2022. https://doi.org/10.1109/ICSINTESA56431.2022.10041694

P. D. P. Adi, A. Wahid, A. Mappadang, et al. Performance evaluation of LoRa 915MHz for health monitoring with adaptive data rate. In IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), pp. 252–257. IEEE, 2022. https://doi.org/10.1109/COMNETSAT56033.2022.9994547

W. Xu, J. Y. Kim, W. Huang, et al. Measurement, characterization, and modeling of LoRa technology in multifloor buildings. IEEE Internet of Things Journal 7(1):298–310, 2020. https://doi.org/10.1109/JIOT.2019.2946900

D. Garlisi, A. Pagano, F. Giuliano, et al. A coexistence study of low-power wide-area networks based on LoRaWAN and Sigfox. In IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7. IEEE, 2023. https://doi.org/10.1109/WCNC55385.2023.10118692

R. L. Rosa, L. Boulebnane, A. Pagano, et al. Towards mass-scale IoT with energy-autonomous LoRaWAN sensor nodes. Sensors 24(13):4279, 2024. https://doi.org/10.3390/S24134279

M. O. Ojo, D. Adami, M. Pagano, et al. Design, implementation and evaluation of a LoRa packet generator for forest environments. In IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6. IEEE, 2021. https://doi.org/10.1109/CAMAD52502.2021.9617785

K. D. Irianto. Performance evaluation of LoRa in farm irrigation system with internet of things. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control 7(4):383–390, 2022. https://doi.org/10.22219/KINETIK.V7I4.1551

S. Fuada, S. F. Anindya, F. Dawani, et al. Prototype of long-range radio communication for e-Nelayan devices using LoRaWAN. Jurnal Infotel 10(4):202–209, 2018. https://doi.org/10.20895/infotel.v10i4.411

F. Shang, W. Su, Q. Wang, et al. A location estimation algorithm based on RSSI vector similarity degree. International Journal of Distributed Sensor Networks 10(8):371350, 2014. https://doi.org/10.1155/2014/371350

S. Sadowski, P. Spachos. RSSI-based indoor localization with the internet of things. IEEE Access 6:30149–30161, 2018. https://doi.org/10.1109/ACCESS.2018.2843325

N. Jeftenić, M. Simić, Z. Stamenković. Impact of environmental parameters on SNR and RSS in LoRaWAN. In International Conference on Electrical, Communication and Computer Engineering (ICECCE), pp. 1–6. IEEE, 2020. https://doi.org/10.1109/ICECCE49384.2020.9179250

I. Urabe, A. Li, M. Fujisawa, et al. Design and implementation of SF selection based on distance and SNR using autonomous distributed reinforcement learning in LoRa networks. In Y. Kambayashi, N. T. Nguyen, S.-H. Chen, et al. (eds.), Artificial Intelligence for Communications and Networks, pp. 34–42. Springer Nature Switzerland, Cham, 2023. https://doi.org/10.1007/978-3-031-29126-5_3

M. Centenaro, L. Vangelista, A. Zanella, M. Zorzi. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications 23(5):60–67, 2016. https://doi.org/10.1109/MWC.2016.7721743

F. Adelantado, X. Vilajosana, P. Tuset-Peiro, et al. Understanding the limits of LoRaWAN. IEEE Communications Magazine 55(9):34–40, 2017. https://doi.org/10.1109/MCOM.2017.1600613

U. Raza, P. Kulkarni, M. Sooriyabandara. Low power wide area networks: An overview. IEEE Communications Surveys & Tutorials 19(2):855–873, 2017. https://doi.org/10.1109/COMST.2017.2652320

P. D. P. Adi, A. Kitagawa. A performance of radio frequency and signal strength of LoRa with BME280 sensor. Telecommunication Computing Electronics and Control 18(2):649–660, 2020. https://doi.org/10.12928/TELKOMNIKA.V18I2.14843

Downloads

Published

2025-01-07

Issue

Section

Articles

How to Cite

Noprianto, N., Dien, H. E. ., Sukmana, S. E. ., Al Baity, F. ., & Mentari, M. . (2025). Empowering IoT: leveraging data sensor communication with LoRAWAN in diverse environments. Acta Polytechnica, 64(6), 539-549. https://doi.org/10.14311/AP.2024.64.0539