Prediction of temperature field distribution in a gas turbine using a higher order neural network

Authors

  • Jan Pařez Czech Technical University in Prague, Faculty of Mechanical Engineering, Center of Aviation and Space Research, Technická 4, Prague 6, Czech Republic https://orcid.org/0000-0001-8559-5776
  • Patrik Kovář Czech Technical University in Prague, Faculty of Mechanical Engineering, Center of Aviation and Space Research, Technická 4, Prague 6, Czech Republic https://orcid.org/0000-0001-6632-2780
  • Adam Tater Czech Technical University in Prague, Faculty of Mechanical Engineering, Center of Aviation and Space Research, Technická 4, Prague 6, Czech Republic https://orcid.org/0000-0001-5201-2060

DOI:

https://doi.org/10.14311/AP.2023.63.0430

Keywords:

gas turbine cooling, heat transfer, artificial neural network, natural convection

Abstract

This paper presents the prediction of temperature field distribution in a single annular section using an artificial neural network (ANN). This temperature distribution is non-uniform on the outer tube due to continuous natural convection and radiation caused by the homogeneous steady-state heating of the inner tube, which represents the hot gas flow path through the turbine. The outer tube represents the case of a gas turbine. This temperature is important for the electronic components attached to the engine or the overall engine deformation. The presented approach allows for a quick estimation of the temperature distribution without the need to perform time consuming computational fluid dynamics (CFD) simulations. This can greatly accelerate the design and development of gas turbines. A machine learning approach is applied to an extensive set of CFD simulations under different operating conditions and geometry setups.

Downloads

Download data is not yet available.

References

W. Nakayama. Thermal management of electronic equipment: A review of technology and research topics. Applied Mechanics Reviews 39(12):1847–1868, 1986. https://doi.org/10.1115/1.3149515

S. Chatterton, P. Pennacchi, A. Vania. An unconventional method for the diagnosis and study of generator rotor thermal bows. Journal of Engineering for Gas Turbines and Power 144(1):011024, 2022. https://doi.org/10.1115/1.4052079

X. Yu, Z. Liu, Z. Zhou, et al. Experimental research on the characteristics of thermal bow in an aeroengine HP spool. In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, vol. 1: Aircraft Engine; Fans and Blowers. ASME, 2020. https://doi.org/10.1115/GT2020-14109

H. Peng, Z. Zhou, J. Feng, et al. Prediction of the thermal bow of rotor based on the measured displacement and temperature. International Journal of Distributed Sensor Networks 16(10), 2020. https://doi.org/10.1177/1550147720962993

E. Padilla, A. Silveira-Neto. Large-eddy simulation of transition to turbulence in natural convection in a horizontal annular cavity. International Journal of Heat and Mass Transfer 51(13-14):3656–3668, 2008. https://doi.org/10.1016/j.ijheatmasstransfer. 2007.07.025

A. Pilkington, B. Rosic, K. Tanimoto, S. Horie. Prediction of natural convection heat transfer in gas turbines. International Journal of Heat and Mass Transfer 141:233–244, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.074

B. Vijayaragavan, S. P. Asok, C. R. Shakthi Ganesh. Heat transfer characteristics of double pipe heat exchanger having externally enhanced inner pipe. Acta Polytechnica 63(1):65–74, 2023. https://doi.org/10.14311/AP.2023.63.0065

M. Gaffuri, P. Ott, S. Naik, M. Henze. Experimental investigation of sequential narrow impingement channels for turbine cooling. In 14th European Conference on Turbomachinery Fluid dynamics & Thermodynamics. European Turbomachinery Society, 2021. https://doi.org/10.29008/ETC2021-523

K.-I. Takeishi, S. Aoki. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines part 1: Film cooling. Annals of the New York Academy of Sciences 934(1):305–312, 2001. https://doi.org/10.1111/j.1749-6632.2001.tb05864.x

J. Pařez, A. Tater, P. Kovář, et al. Influence of geometrical design on the cooling process of double annular turbine section. International Journal of Engine Research 24(8):3707–3719, 2023. https://doi.org/10.1177/14680874231167206

J. Pařez, P. Rohan, T. Vampola. Heat transfer in double annular due to natural convection. In IOP Conference Series: Materials Science and Engineering, vol. 1190, p. 012002. IOP Publishing, 2021. https://doi.org/10.1088/1757-899X/1190/1/012002

J. Pařez, A. Tater, J. Polansk`y, T. Vampola. Experimental and numerical study of natural convection in 3D double horizontal annulus. In European Physical Journal Web of Conferences, vol. 264. 2022. 01027. https://doi.org/10.1051/epjconf/202226401027

P. Kovář, J. Fürst. Comparison of multilayer perceptron and higher order neural network’s ability to solve initial value problem. In 24th International Scientific Conference Applied Mechanics 2023 Book of Abstracts, pp. 55–58. Strojnícka fakulta STU v Bratislave, Bratislava, SK, 2023. ISBN 978-80-227-5294-7.

P. Kovář, J. Fürst. Scalable activation function employment in higher order neural networks in tasks of supervised learning. In Book of Abstracts 18th Youth Symposium on Experimental Solid Mechanics, p. 37. Institute of Theoretical and Applied Mechanics, AS CR, Prague, CZ, 2023. ISBN 978-80-86246-66-6.

P. Kovář, A. Tater, J. Pařez, J. Fürst. About the appropriate neural network size for the engineering applications. In Proceedings of Computational Mechanics 2023, pp. 91–94. University of West Bohemia, Pilsen, CZ, 2023. ISBN 978-80-261-1177-1.

D. C. Wilcox, et al. Turbulence modeling for CFD, vol. 2. DCW industries La Canada, CA, 1998. https://doi.org/10.1017/S0022112095211388

F. Menter, R. Lechner, A. Matyushenko. Best practice: generalized k-ω two-equation turbulence model in Ansys CFD (GEKO). ANSYS Germany GmbH 2019.

S. Chandrasekhar. Radiative transfer. Dover Publications, 2013. ISBN 978-0-486-60590-6.

J. Boussinesq. Théorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Tome II : Refroidissement et échauffement par rayonnement; conductibilité des tiges, lames et masses cristallines, courants de convection, théorie mécanique de la lumière. 1903. xxxii, 625, vol. 2. Gauthier-Villars, 1903.

P. Mayeli, G. J. Sheard. Buoyancy-driven flows beyond the Boussinesq approximation: A brief review. International Communications in Heat and Mass Transfer 125:105316, 2021. https://doi.org/10.1016/j.icheatmasstransfer.2021.105316

C. M. Rhie, W.-L. Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA journal 21(11):1525–1532, 1983. https://doi.org/10.2514/3.8284

M.-S. Liou, C. J. Steffen Jr. A new flux splitting scheme. Journal of Computational physics 107(1):23–39, 1993. https://doi.org/10.1006/jcph.1993.1122

A. Harten, P. D. Lax, B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25(1):35–61, 1983. https://doi.org/10.1137/1025002

J. Holman, J. Fürst. Rotated-hybrid Riemann solver for all-speed flows. Journal of Computational and Applied Mathematics 427:115129, 2023. https://doi.org/10.1016/j.cam.2023.115129

P. J. Roache. Verification and validation in computational science and engineering. Hermosa Albuquerque, NM, Albuquerque, NM, USA, 1998. ISBN: 978-0913478080.

Z. Zlatev, I. Dimov, I. Faragó, Á. Havasi. Richardson extrapolation. In Richardson Extrapolation, vol. 2. De Gruyter, 2017. https://doi.org/10.1515/9783110533002

M. Gupta, I. Bukovsky, N. Homma, et al. Fundamentals of higher order neural networks for modeling and simulation. In Artificial Higher Order Neural Networks for Modeling and Simulation, pp. 103–133. IGI Global, 2013. https://doi.org/10.4018/978-1-4666-2175-6.ch006

M. Gupta, L. Jin, N. Homma. Static and dynamic neural networks: from fundamentals to advanced theory. John Wiley & Sons, 2004. ISBN 0-471-21948-7.

M. Stein. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2):143–151, 1987. https://doi.org/10.2307/1269769

Labfacility Ltd, Angmering, West Sussex, UK. The New Labfacility Temperature Handbook, v2.1 edn., 2006. TH0906.

Downloads

Published

2023-12-31

How to Cite

Pařez, J., Kovář, P., & Tater, A. (2023). Prediction of temperature field distribution in a gas turbine using a higher order neural network. Acta Polytechnica, 63(6), 430–438. https://doi.org/10.14311/AP.2023.63.0430

Issue

Section

Articles