The importance of using active thermal protection following restoration work on old buildings

Authors

  • Patrik Šťastný Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia https://orcid.org/0000-0002-1387-6197
  • Naďa Antošová Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Technology, Radlinského 11, 810 05 Bratislava, Slovakia
  • Daniel Kalús Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Services, Radlinského 11, 810 05 Bratislava, Slovakia
  • Veronika Mučková Slovak University of Technology in Bratislava, Faculty of Civil Engineering, Department of Building Services, Radlinského 11, 810 05 Bratislava, Slovakia

DOI:

https://doi.org/10.14311/AP.2024.64.0118

Keywords:

rising damp, anti-moisture technology, remediation interventions, additional isolation, ETICS, active thermal protection (ATP)

Abstract

The paper deals with the issue of humidity and the unhealthy environment of old buildings. Humidity is a very widespread problem not only in historical buildings, but also in newer buildings. This problem can be observed in various parts of the world and thus it can be said that it is a global problem. Humidity in these buildings causes an unhealthy environment, which has a negative effect on individual building constructions, but also on people’s health. Humidity is also associated with the form of disruption of the individual layers of the construction and the disruption of the thermal resistance of these constructions. Buildings such as these subsequently have an unhealthy environment. After a part of the description of the known issue, the contribution follows on from this part by indicating possible remedial interventions and analyses the systems of additional thermal insulation (ETICS, ATP), ensuring the improvement of the internal environment. Finally, the article presents possible connections and extensions of this research and its application directly in practice. The results of the proposed research will significantly contribute to the approach to rehabilitated older buildings and their long-term sustainability from an economic point of view, as well as the possible use of them.

Downloads

Download data is not yet available.

References

E. Franzoni. Rising damp removal from historical masonries: A still open challenge. Construction and Building Materials 54:123–136, 2014. https://doi.org/10.1016/j.conbuildmat.2013.12.054

J. Lebeda, kolektiv. Sanace zavlhlého zdiva budov. SNTL, Praha, Czech Republic, 1988.

O. Makýš. Technológia obnovy budov – Ochrana a oprava spodných a obalových konštrukcií. SPEKTRUM STU, Bratislava, Slovakia, 2018.

D. Kubečková. Regeneration of panel housing estates from the perspective of thermal technology, sustainability and environmental context (case study of the city of Ostrava, Czech Republic). Sustainability 15(11):8449, 2023. https://doi.org/10.3390/su15118449

EMERISDA. Summary report on existing methods against rising damp. D2.1 FINAL version, 2014. [2023-09-03]. https://www.emerisda.eu/wpcontent/uploads/2014/07/D-2_1.pdf

About the system Solinterra®. [2023-12-03]. https://www.solinterra.si/en/about-solinterra.html

A. Li, X. Xu, Y. Sun. A study on pipe-embedded wall integrated with ground source-coupled heat exchanger for enhanced building energy efficiency in diverse climate regions. Energy and Buildings 121:139–151, 2016. https://doi.org/10.1016/j.enbuild.2016.04.005

M. Krzaczek, J. Florczuk, J. Tejchman. Improved energy management technique in pipe-embedded wall heating/cooling system in residential buildings. Applied Energy 254:113711, 2019. https://doi.org/10.1016/j.apenergy.2019.113711

E. Møller, B. Olsen. Rising damp, a reoccurring problem in basements: a case study with different attempts to stop the moisture. In J. Vinha, J. Piironen, K. Salminen (eds.), 9th Nordic Symposium on Building Physics, vol. 2, pp. 765–772. Tampere University of Technology, 2011.

Český normalizační institut. ČSN P 73 0610. Hydroizolace staveb – Sanace vlhkého zdiva – Základní ustanovení [Waterproofing of buildings – The rehabilitation of damp masonry and additional protection of buildings against ground moisture and against atmospheric water – Basic provision], 2020. [2023-11-14]. https://csnonline.agenturacas.cz/Detailnormy.aspx?k=58539

R. Wójcik, A. Panuś, M. Tunkiewicz, M. Hamdy. Influence of chemical damp proof cream on the capillary action and microstructure of mortars. Energy Procedia 132:670–675, 2017. https://doi.org/10.1016/j.egypro.2017.10.004

H. Schmidt. Historische Bauwerksabdichtungen – Traditionelle und neuzeitliche Maßnahmen zum Schutz gegen Bodenfeuchtigkeit und zur Trockenlegung feuchter Wände. Bautechnik 76(7):581–598, 1999. https://doi.org/10.1002/bate.199903790

G. Kiesow. Památková péče v Německu. Barrister & Principal, Brno, Czech Republic, 2012. ISBN 978-80-87474-54-9.

EOTA. Guideline for European technical approval of external thermal insulation composite systems (ETICS) with rendering, 2013. [2024-01-08]. https://www.eota.eu/sites/default/files/uploads/ETAGs/etag-004-february-2013.pdf

EOTA. EAD 040759-00-0404. External thermal insulation composite system (ETICS) with rendering on boards based on polystyrene and cement, 2018. [2024-01-08]. https://www.eota.eu/sites/default/files/uploads/ETAGs/etag-004-february-2013.pdf

Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, 2002. [2024-01-15]. http://data.europa.eu/eli/dir/2002/91/oj/eng

A. Novotný. 20 rokov zatepľovania na Slovensku, 2011. [2023-09-03]. http://www.4-construction.com/sk/clanok/20-rokov-zateplovania-naslovensku/

Slovenský ústav technickej normalizácie, Bratislava, Slovakia. STN 73 2901/01: 2015. Zhotovovanie vonkajších tepelnoizolačných kontaktných systémov (ETICS), 2015.

International charter for the conservation and restoration of monuments and sites (the Venice charter 1964), 1964. [2023-09-03]. https://www.icomos.org/images/DOCUMENTS/Charters/venice_e.pdf

Slovenský ústav technickej normalizácie, Bratislava, Slovakia. STN 73 0540-2. Tepelná ochrana budov. Tepelnotechnické vlastnosti stavebných konštrukcií a budov. Časť 2: Funkčné požiadavky.

M. Petrichenko, D. Nemova, E. Kotov, et al. Ventilated facade integrated with the HVAC system for cold climate. Magazine of Civil Engineering 77(1):47–58, 2018. https://doi.org/10.18720/MCE.77.5

European Parliament, Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Union 53(L 153), 2010. https://doi.org/10.3000/17252555.L_2010.153.eng

D. Kalús, D. Koudelková, V. Mučková, et al. Contribution to the research and development of innovative building components with embedded energy-active elements. Coatings 12(7):1021, 2022. https://doi.org/10.3390/coatings12071021

D. Kalús, D. Koudelková, V. Mučková, et al. Practical experience in the application of energy roofs, ground heat storages, and active thermal protection on experimental buildings. Applied Sciences 12(18):9313, 2022. https://doi.org/10.3390/app12189313

D. Kalús, D. Koudelková, V. Mučková, et al. Experience in researching and designing an innovative way of operating combined building–energy systems using renewable energy sources. Applied Sciences 12(20):10214, 2022. https://doi.org/10.3390/app122010214

V. Mučková, D. Kalús, D. Koudelková, et al. Analysis of the dynamic thermal barrier in building envelopes. Coatings 13(3):648, 2023. https://doi.org/10.3390/coatings13030648

V. Mučková, D. Kalús, D. Koudelková, et al. Contribution to active thermal protection research – Part 1: Analysis of energy functions by parametric study. Energies 16(11):4391, 2023. https://doi.org/10.3390/en16114391

D. Kalús, V. Mučková, D. Koudelková, et al. Contribution to active thermal protection research – Part 2: Verification by experimental measurement. Energies 16(12):4595, 2023. https://doi.org/10.3390/en16124595

B. Król, K. Kupiec. Optimal location of the active thermal insulation layer in the building envelope. Thermo 3(1):176–199, 2023. https://doi.org/10.3390/thermo3010011

F. Meggers, L. Baldini, H. Leibundgut. An innovative use of renewable ground heat for insulation in low exergy building systems. Energies 5(8):3149–3166, 2012. https://doi.org/10.3390/en5083149

Downloads

Published

2024-05-07

How to Cite

Šťastný, P., Antošová, N., Kalús, D., & Mučková, V. (2024). The importance of using active thermal protection following restoration work on old buildings. Acta Polytechnica, 64(2), 118–127. https://doi.org/10.14311/AP.2024.64.0118

Issue

Section

Articles