A novel approach to nonlinear fractional volterra integral equations
DOI:
https://doi.org/10.14311/AP.2024.64.0414Keywords:
integral equations, fractional calculus, Leibniz integral rule, Mitteg-Leffler function, Caputo fractional operator, Riemann-Liouville fractional operatorAbstract
Nonlinear Fractional Volterra integral equations (FVIEs) of the first kind present challenges due to their intricate nature, combining fractional calculus and integral equations. In this research paper, we introduce a novel method for solving such equations using Leibniz integral rules. Our study focuses on a thorough analysis and application of the proposed algorithm to solve fractional Volterra integral equations. By using Leibniz integral rules, we offer a fresh perspective on handling these equations, shedding light on their fundamental properties and behaviours. As a result of this study, we anticipate contributing distinctively to the broader development of analytical tools and techniques. By bridging the gap between fractional calculus and integral equations, our approach not only offers a valuable computational methodology but also paves the way for new insights into the application domains in which such equations arise.
Downloads
References
M. Belmekki, M. Benchohra. Existence results for fractional order semilinear functional differential equations with nondense domain. Nonlinear Analysis: Theory, Methods & Applications 72(2):925–932, 2010. https://doi.org/10.1016/j.na.2009.07.034
H. K. Jassim, M. A. Hussein. A new approach for solving nonlinear fractional ordinary differential equations. Mathematics 11(7):1565, 2023. https://doi.org/10.3390/math11071565
M. A. Hussein, H. K. Jassim. Analysis of fractional differential equations with Antagana-Baleanu fractional operator. Progress in Fractional Differentiation and Applications 9(4):681–686, 2023. https://doi.org/10.18576/pfda/090411
M. Higazy, S. Aggarwal, T. A. Nofal. Sawi decomposition method for Volterra integral equation with application. Journal of Mathematics 2020(1):6687134, 2020. https://doi.org/10.1155/2020/6687134
S. Jahanshahi, E. Babolian, D. F. M. Torres, A. Vahidi. Solving Abel integral equations of first kind via fractional calculus. Journal of King Saud University – Science 27(2):161–167, 2015. https://doi.org/10.1016/j.jksus.2014.09.004
G. Pellicane, L. L. Lee, C. Caccamo. Integral-equation theories of fluid phase equilibria in simple fluids. Fluid Phase Equilibria 521:112665, 2020. https://doi.org/10.1016/j.fluid.2020.112665
M. A. Hussein, H. K. Jassim, A. K. Jassim. An innovative iterative approach to solving Volterra integral equations of second kind. Acta Polytechnica 64(2):87–102, 2024. https://doi.org/10.14311/AP.2024.64.0087
H. Mottaghi Golshan. Numerical solution of nonlinear m-dimensional Fredholm integral equations using iterative Newton-Cotes rules. Journal of Computational and Applied Mathematics 448:115917, 2024. https://doi.org/10.1016/j.cam.2024.115917
M. A. Hussein. The approximate solutions of fractional differential equations with Antagana-Baleanu fractional operator. Mathematics and Computational Sciences 3(3):29–39, 2022. https://doi.org/10.30511/MCS.2022.560414.1077
H. K. Jassim, M. A. S. Hussain. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. Journal of Mathematics and Computer Science 23(1):58–66, 2021. https://doi.org/10.22436/jmcs.023.01.06
R. Katani, S. Mckee. A hybrid Legendre block-pulse method for mixed Volterra-Fredholm integral equations. Journal of Computational and Applied Mathematics 376:112867, 2020. https://doi.org/10.1016/j.cam.2020.112867
H. K. Jassim, M. A. Hussein. A novel formulation of the fractional derivative with the order α ≥ 0 and without the singular kernel. Mathematics 10(21):4123, 2022. https://doi.org/10.3390/math10214123
J. Wu, Y. Zhou, C. Hang. A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 167:105791, 2020. https://doi.org/10.1016/j.sab.2020.105791
M. A. Hussein. Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator. Baghdad Science Journal 21(3):1044–1054, 2024. https://doi.org/10.21123/bsj.2023.7310
S. Aggarwal, N. Sharma. Laplace transform for the solution of first kind linear Volterra integral equation. Journal of Advanced Research in Applied Mathematics and Statistics 4(3&4):16–23, 2019.
S. Aggarwal, R. Kumar, J. Chandel. Solution of linear Volterra integral equation of second kind via Rishi transform. Journal of Scientific Research 15(1):111–119, 2023. https://doi.org/10.3329/jsr.v15i1.60337
K. Sayevand, J. Tenreiro Machado, D. Baleanu. A new glance on the Leibniz rule for fractional derivatives. Communications in Nonlinear Science and Numerical Simulation 62:244–249, 2018. https://doi.org/10.1016/j.cnsns.2018.02.037
S. Douglas, L. Grafakos. Norm estimates for the fractional derivative of multiple factors. Journal of Mathematical Analysis and Applications 537(2):128409, 2024. https://doi.org/10.1016/j.jmaa.2024.128409
S. Aggarwal, R. Kumar, J. Chandel. Exact solution of non-linear Volterra integral equation of first kind using Rishi transform. Bulletin of Pure & Applied Sciences – Mathematics and Statistics 41(2):159–166, 2022. https://doi.org/10.5958/2320-3226.2022.00022.4.
E. Artin. The gamma function. Courier Dover Publications, USA, 2015. ISBN 978-0-486-80300-5.
A. K. Shukla, J. C. Prajapati. On a generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications 336(2):797–811, 2007. https://doi.org/10.1016/j.jmaa.2007.03.018
D. Pang, W. Jiang, A. U. Niazi. Fractional derivatives of the generalized Mittag-Leffler functions. Advances in Difference Equations 2018:415, 2018. https://doi.org/10.1186/s13662-018-1855-9
C. Li, D. Qian, Y. Chen. On Riemann-Liouville and Caputo derivatives. Discrete Dynamics in Nature and Society 2011(1):562494, 2011. https://doi.org/10.1155/2011/562494
H. Flanders. Differentiation under the integral sign. The American Mathematical Monthly 80(6):615–627, 1973. https://doi.org/10.1080/00029890.1973.11993339
I. T. Huseynov, A. Ahmadova, N. I. Mahmudov. Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications, 2020. [2024-04-26]. https://doi.org/10.48550/arXiv.2012.11360
R. Kress. Linear integral equations, vol. 82. Springer, 1989.
A.-M. Wazwaz. Linear and nonlinear integral equations. Springer Berlin, Germany, 2011. https://doi.org/10.1007/978-3-642-21449-3
J. Talab Abdullah, B. Sweedan Naseer, B. Taha Abdllrazak. Numerical solutions of Abel integral equations via Touchard and Laguerre polynomials. International Journal of Nonlinear Analysis and Applications 12(2):1599–1609, 2021. https://doi.org/10.22075/ijnaa.2021.5290
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mohammed Abdulshareef Hussein, Hassan Kamil Jassim
This work is licensed under a Creative Commons Attribution 4.0 International License.