On the vortex identification within a linear blade cascade - an experimental research

Authors

  • Erik Flídr Czech Aerospace Research Centre, Laboratory of High-Speed Aerodynamics, Beranových 130, 199 00 Prague - Letňany

DOI:

https://doi.org/10.14311/AP.2024.64.0018

Keywords:

linear blade cascade, vortex identification, H criteria, experimental research, pressure measurements

Abstract

This paper deals with the identification of the individual vortical structures within a linear blade cascade based on H criteria. The experimental data obtained from the pressure measurement at the cascade outlet were evaluated by a standard procedure to obtain the velocity field in one plane. Then, the vorticity in the flow field was evaluated based on Crocco’s theorem, and in the final step, the helicity density was calculated. The impact of the inlet flow angle on the velocity field as well as on the vortical structures was investigated. The effect of the value of the H threshold on the vortex identification is discussed in the last part of the paper.

Downloads

Download data is not yet available.

References

L. S. Langston, M. L. Nice, R. M. Hooper. Three-dimensional flow within a turbine cascade passage. Journal of Engineering for Power 99(1):21–28, 1977. https://doi.org/10.1115/1.3446247

L. S. Langston. Crossflows in a turbine cascade passage. Journal of Engineering for Power 102(4):866–874, 1980. https://doi.org/10.1115/1.3230352

C. H. Sieverding, P. Van den Bosche. The use of coloured smoke to visualize secondary flows in a turbineblade cascade. Journal of Fluid Mechanics 134:85–89, 1983. https://doi.org/10.1017/S0022112083003237

H. P. Wang, S. J. Olson, R. J. Goldstein, E. R. G. Eckert. Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery 119(1):1–8, 1997. https://doi.org/10.1115/1.2841006

C. H. Sieverding. Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages. Journal of Engineering for Gas Turbines and Power 107(2):248–257, 1985. https://doi.org/10.1115/1.3239704

L. S. Langston. Secondary flows in axial turbines – A review. Annals of the New York Academy of Sciences 934(1):11–26, 2001. https://doi.org/10.1111/j.1749-6632.2001.tb05839.x

P. Ligrani, G. Potts, A. Fatemi. Endwall aerodynamic losses from turbine components within gas turbine engines. Propulsion and Power Research 6(1):1–14, 2017. https://doi.org/10.1016/j.jppr.2017.01.006

A. Perdichizzi. Mach number effects on secondary flow development downstream of a turbine cascade. Journal of Turbomachinery 112(4):643–651, 1990. https://doi.org/10.1115/1.2927705

A. Perdichizzi, M. Ubaldi, P. Zunino. Reynolds stress distribution downstream of a turbine cascade. Experimental Thermal and Fluid Science 5(3):338–350, 1992. https://doi.org/10.1016/0894-1777(92)90079-K

V. Dossena, A. Perdichizzi, M. Ubaldi, P. Zunino. Turbulence measurements downstream of a turbine cascade at different incidence angles and pitch-chord ratios. In Turbo Expo: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery, p. V001T03A020. 1993. https://doi.org/10.1115/93-GT-052

H. P. Hodson, R. G. Dominy. The Off-design performance of a low-pressure turbine cascade. Journal of Turbomachinery 109(2):201–209, 1987. https://doi.org/10.1115/1.3262086

H. P. Hodson, R. G. Dominy. Three-dimensional flow in a low-pressure turbine cascade at its design condition. Journal of Turbomachinery 109(2):177–185, 1987. https://doi.org/10.1115/1.3262083

W. R. Hawthorne. Secondary circulation in fluid flow. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 206(1086):374–387, 1951. https://doi.org/10.1098/rspa.1951.0076

W. R. Hawthorne. Rotational flow through cascades part I – The components of vorticity. The Quarterly Journal of Mechanics and Applied Mathematics 8(3):266–279, 1955. https://doi.org/10.1093/qjmam/8.3.266

A. W. Marris. The Generation of secondary vorticity in an incompressible fluid. Journal of Applied Mechanics 30(4):525–531, 1963. https://doi.org/10.1115/1.3636613

A. W. Marris. On the generation of secondary velocity along a vortex line. Journal of Basic Engineering 86(4):815–818, 1964. https://doi.org/10.1115/1.3655961

A. W. Marris. Generation of secondary vorticity in a stratified fluid. Journal of Fluid Mechanics 20(2):177–181, 1964. https://doi.org/10.1017/S0022112064001124

A. W. Marris. Secondary flows in an incompressible fluid of varying density in a rotating reference frame. Journal of Basic Engineering 88(2):533–537, 1966. https://doi.org/10.1115/1.3645894

A. W. Marris, S. L. Passman. Vector fields and flows on developable surfaces. Archive for Rational Mechanics and Analysis 32(1):29–86, 1969. https://doi.org/10.1007/BF00253256

B. Lakshminarayana, J. H. Horlock. Generalized expressions for secondary vorticity using intrinsic co-ordinates. Journal of Fluid Mechanics 59(1):97–115, 1973. https://doi.org/10.1017/S0022112073001448

J.-Z. Wu, H.-Y. Ma, M.-D. Zhou. Vorticity and Vortex Dynamics. Springer, 2006. https://doi.org/10.1007/978-3-540-29028-5

S. Zhang, D. Choudhury. Eigen helicity density: A new vortex identification scheme and its application in accelerated inhomogeneous flows. Physics of Fluids 18(5):058104, 2006. https://doi.org/10.1063/1.2187071

E. Flídr, T. Jelínek, M. Kladrubský. Experimental investigation of effects of reynolds number and incidence angle on secondary flow within a linear blade cascade. Journal of Thermal Science 30:1–15, 2021. https://doi.org/10.1007/s11630-021-1455-y

Y. Tang, Y. Liu. VR helicity density and its application in turbomachinery tip leakage flows. Chines Journal of Aeronautics 35(11):1–17, 2022. https://doi.org/10.1016/j.cja.2022.05.006

Downloads

Published

2024-03-04

Issue

Section

Articles

How to Cite

Flídr, E. (2024). On the vortex identification within a linear blade cascade - an experimental research. Acta Polytechnica, 64(1), 18-24. https://doi.org/10.14311/AP.2024.64.0018
Received 2023-11-21
Accepted 2023-12-18
Published 2024-03-04