Simulation of an active cooling system for low-concentratinag photovoltaic solar cells
DOI:
https://doi.org/10.14311/AP.2025.65.0429Keywords:
water-cooling system, cooling time, LCPV, concentration ratio, heatsinkAbstract
One of the key challenges of concentrating photovoltaic (CPV) systems is the need for effective thermal management, as the increased solar irradiance significantly raises the operating temperature of solar cells, thereby reducing their efficiency. This study proposes a passive cooling solution for a Π-shaped low-concentration photovoltaic (LCPV) system, designed without a mechanical pump and uses gravity-fed water circulation. The thermal performance of the system was analysed using COMSOL Multiphysics. The simulation results demonstrate that the developed cooling system achieves high temperature uniformity, with a maximum surface temperature difference of only 0.07 °C for a radiator comprising five tubes. The system is capable of reducing the solar cell temperature from 40 °C to 22 °C in 10 seconds. Various radiator configurations were investigated for a module consisting of nine solar cells, confirming that the proposed system enables rapid cooling and maintains the cell temperature within optimal operating conditions. The presented design offers a simple, energy-efficient, and cost-effective solution for thermal regulation in LCPV modules.
Downloads
References
T. Tsoutsos, N. Frantzeskaki, V. Gekas. Environmental impacts from the solar energy technologies. Energy Policy 33(3):289–296, 2005. https://doi.org/10.1016/S0301-4215(03)00241-6
A. A. Aminou Moussavou, A. K. Raji, M. Adonis. Strategic modulation of thermal to electrical energy ratio produced from PV/T module. Acta Polytechnica 61(2):313–323, 2021. https://doi.org/10.14311/AP.2021.61.0313
Y. F. Nassar, H. J. El-Khozondar, M. Elnaggar, et al. Renewable energy potential in the State of Palestine: Proposals for sustainability. Renewable Energy Focus 49:100576, 2024. https://doi.org/10.1016/j.ref.2024.100576
H. J. El-Khozondar, F. El-batta, R. J. El-Khozondar, et al. Standalone hybrid PV/wind/diesel-electric generator system for a COVID-19 quarantine center. Environmental Progress & Sustainable Energy 42(3):e14049, 2023. https://doi.org/10.1002/ep.14049
Y. F. Nassar, S. Y. Alsadi, H. J. El-Khozondar, et al. Design of an isolated renewable hybrid energy system: A case study. Materials for Renewable and Sustainable Energy 11(3):225–240, 2022. https://doi.org/10.1007/s40243-022-00216-1
Y. F. Nassar, H. J. El-Khozondar, M. M. Khaleel, et al. Design of reliable standalone utility-scale pumped hydroelectric storage powered by PV/wind hybrid renewable system. Energy Conversion and Management 322:119173, 2024. https://doi.org/10.1016/j.enconman.2024.119173
Y. Fathi Nassar, S. Yassin Alsadi. Assessment of solar energy potential in Gaza Strip-Palestine. Sustainable Energy Technologies and Assessments 31:318–328, 2019. https://doi.org/10.1016/j.seta.2018.12.010
A. F. M. Ali, E. M. H. Karram, Y. F. Nassar, A. A. Hafez. Reliable and economic isolated renewable hybrid power system with pumped hydropower storage. In 2021 22nd International Middle East Power Systems Conference (MEPCON), pp. 515–520. 2021. https://doi.org/10.1109/MEPCON50283.2021.9686233
M. M G Almihat, M. MTE Kahn. Design and implementation of hybrid renewable energy (PV/wind/diesel/battery) microgrids for rural areas. Solar Energy and Sustainable Development Journal 12(1):71–95, 2023. https://doi.org/10.51646/jsesd.v12i1.151
H. J. El-Khozondar, A. A. Asfour, Y. F. Nassar, et al. Photovoltaic solar energy for street lighting: A case study at Kuwaiti roundabout, Gaza strip, Palestine. Power Engineering and Engineering Thermophysics 3(2):77–91, 2024. https://doi.org/https://doi.org/10.56578/peet030201
A. Kagilik, A. Tawel. Performance analysis of 14MW grid-connected photovoltaic system. Solar Energy and Sustainable Development Journal 4(1):11–21, 2015. https://doi.org/10.51646/jsesd.v4i1.78
M. M. Rahman, J. Pearce. Modular open source solar photovoltaic-powered DC nanogrids with efficient energy management system. Solar Energy and Sustainable Development Journal 13(1):22–42, 2024. https://doi.org/10.51646/jsesd.v13i1.169
H. El Achouby, M. Zaimi, A. Ibral, E. M. Assaid. New analytical approach for modelling effects of temperature and irradiance on physical parameters of photovoltaic solar module. Energy Conversion and Management 177:258–271, 2018. https://doi.org/10.1016/j.enconman.2018.09.054
E. Muñoz, P. G. Vidal, G. Nofuentes, et al. CPV standardization: An overview. Renewable and Sustainable Energy Reviews 14(1):518–523, 2010. https://doi.org/10.1016/j.rser.2009.07.030
A. Ejaz, H. Babar, H. M. Ali, et al. Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustainable Energy Technologies and Assessments 46:101199, 2021. https://doi.org/10.1016/j.seta.2021.101199
K. Shanks, S. Senthilarasu, T. K. Mallick. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews 60:394–407, 2016. https://doi.org/10.1016/j.rser.2016.01.089
A. Zahedi. Review of modelling details in relation to low-concentration solar concentrating photovoltaic. Renewable and Sustainable Energy Reviews 15(3):1609–1614, 2011. https://doi.org/10.1016/j.rser.2010.11.051
N. Xu, J. Ji, W. Sun, et al. Outdoor performance analysis of a 1090× point-focus fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells. Energy Conversion and Management 100:191–200, 2015. https://doi.org/10.1016/j.enconman.2015.04.082
G. Dosymbetova, S. Mekhilef, A. Saymbetov, et al. Modeling and simulation of silicon solar cells under low concentration conditions. Energies 15(24):9404, 2022. https://doi.org/10.3390/en15249404
B. Du, E. Hu, M. Kolhe. Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renewable and Sustainable Energy Reviews 16(9):6732–6736, 2012. https://doi.org/10.1016/j.rser.2012.09.007
M. M. Fouad, L. A. Shihata, E. I. Morgan. An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews 80:1499–1511, 2017. https://doi.org/10.1016/j.rser.2017.05.141
E. Radziemska. The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy 28(1):1–12, 2003.https://doi.org/10.1016/S0960-1481(02)00015-0
I. García, M. Victoria, I. Antón. Temperature Effects on CPV Solar Cells, Optics and Modules, chap. 5, pp. 245–292. John Wiley & Sons, Ltd, 2016. https://doi.org/10.1002/9781118755655.ch05
S. Jakhar, M. S. Soni, N. Gakkhar. Historical and recent development of concentrating photovoltaic cooling technologies. Renewable and Sustainable Energy Reviews 60:41–59, 2016. https://doi.org/10.1016/j.rser.2016.01.083
S. Sargunanathan, A. Elango, S. T. Mohideen. Performance enhancement of solar photovoltaic cells using effective cooling methods: A review. Renewable and Sustainable Energy Reviews 64:382–393, 2016. https://doi.org/10.1016/j.rser.2016.06.024
A. Royne, C. J. Dey, D. R. Mills. Cooling of photovoltaic cells under concentrated illumination: A critical review. Solar Energy Materials and Solar Cells 86(4):451–483, 2005. https://doi.org/10.1016/j.solmat.2004.09.003
K. A. Ibrahim, P. Luk, Z. Luo. Cooling of concentrated photovoltaic cells – A review and the perspective of pulsating flow cooling. Energies 16(6):2842, 2023. https://doi.org/10.3390/en16062842
A. Radwan, M. Emam, M. Ahmed. Chapter 2.15 – Comparative study of active and passive cooling techniques for concentrated photovoltaic systems. In I. Dincer, C. O. Colpan, O. Kizilkan (eds.), Exergetic, Energetic and Environmental Dimensions, pp. 475–505. Academic Press, 2018. https://doi.org/10.1016/B978-0-12-813734-5.00027-5
S. Nižetić, A. Papadopoulos, E. Giama. Comprehensive analysis and general economicenvironmental evaluation of cooling techniques for photovoltaic panels, Part I: Passive cooling techniques. Energy Conversion and Management 149:334–354, 2017. https://doi.org/10.1016/j.enconman.2017.07.022
H. M. S. Bahaidarah, A. A. B. Baloch, P. Gandhidasan. Uniform cooling of photovoltaic panels: A review. Renewable and Sustainable Energy Reviews 57:1520–1544, 2016. https://doi.org/10.1016/j.rser.2015.12.064
M. Xiao, L. Tang, X. Zhang, et al. A review on recent development of cooling technologies for concentrated photovoltaics (CPV) systems. Energies 11(12):3416, 2018. https://doi.org/10.3390/en11123416
G. Dosymbetova, S. Mekhilef, S. Orynbassar, et al. Neural network-based active cooling system with IoT monitoring and control for LCPV silicon solar cells. IEEE Access 11:52585–52602, 2023. https://doi.org/10.1109/ACCESS.2023.3280265
A. B. S. Raj, S. P. Kumar, G. Manikandan, P. J. Titus. An experimental study on the performance of concentrated photovoltaic system with cooling system for domestic applications. International Journal of Engineering and Advanced Technology (IJEAT) 3(6):97–101, 2014.
N. A. S. Elminshawy, M. El-Ghandour, Y. Elhenawy, et al. Experimental investigation of a V-trough PV concentrator integrated with a buried water heat exchanger cooling system. Solar Energy 193:706–714, 2019. https://doi.org/10.1016/j.solener.2019.10.013
A. A. Tarabsheh, S. Voutetakis, A. I. Papadopoulos, et al. Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chemical Engineering Transactions 35:1387–1392, 2013. https://doi.org/10.3303/CET1335231
S. A. Zubeer, O. M. Ali. Performance analysis and electrical production of photovoltaic modules using active cooling system and reflectors. Ain Shams Engineering Journal 12(2):2009–2016, 2021. https://doi.org/10.1016/j.asej.2020.09.022
M. Chaabane, H. Mhiri, P. Bournot. Performance optimization of water-cooled concentrated photovoltaic system. Heat Transfer Engineering 37(1):76–81, 2016. https://doi.org/10.1080/01457632.2015.1042344
S. Orynbassar, D. Almen, S. Mekhilef, et al. Minimum solar tracking system for a Fresnel lens-based LCPV. Renewable Energy 237:121607, 2024. https://doi.org/10.1016/j.renene.2024.121607
A. A. Hafez, Y. F. Nassar, M. I. Hammdan, S. Y. Alsadi. Technical and economic feasibility of utility-scale solar energy conversion systems in Saudi Arabia. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 44(1):213–225, 2020. https://doi.org/10.1007/s40998-019-00233-3
H. Awad, Y. F. Nassar, A. Hafez, et al. Optimal design and economic feasibility of rooftop photovoltaic energy system for Assuit University, Egypt. Ain Shams Engineering Journal 13(3):101599, 2022. https://doi.org/10.1016/j.asej.2021.09.026
K. A. A. Amer, M. A. Irhouma, M. I. Hamdan, et al. Economic-Environmental-Energetic (3E) analysis of photovoltaic solar energy systems: Case study of mechanical & renewable energy engineering departments at Wadi AlShatti University. Wadi AlShatti University Journal of Pure and Applied Science 3(1):51–58, 2025.
Y. F. Nassar, A. A. Salem. The reliability of the photovoltaic utilization in southern cities of Libya. Desalination 209(1):86–90, 2007. https://doi.org/10.1016/j.desal.2007.04.013
M. R. Gomaa, M. Al-Dhaifallah, A. Alahmer, H. Rezk. Design, modeling, and experimental investigation of active water cooling concentrating photovoltaic system. Sustainability 12(13):5392, 2020. https://doi.org/10.3390/su12135392
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sayat Orynbassar, Ainur Kapparova, Gulbakhar Dosymbetova, Dinara Almen, Evan Yershov, Ahmet Saymbetov, Madiyar Nurgaliyev, Batyrbek Zholamanov

This work is licensed under a Creative Commons Attribution 4.0 International License.


