Precipitation of oxide dispersion strength steels after long-term annealing at temperature of 475 °C

Authors

  • Dávid Košovský Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 841 04 Bratislava, Slovakia
  • Marcel Miglierini Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 841 04 Bratislava, Slovakia; Czech Technical University in Prague, Faculty of Nuclear Science and Physical Engineering, Department of Nuclear Reactors, V Holešovičkách 2, 180 00 Praha, Czech Republic
  • Tomáš Kmječ Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Praha, Czech Republic; Czech Academy of Sciences, Institute of Physics, Na Slovance 2, 182 00 Praha, Czech Republic
  • Július Dekan Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 841 04 Bratislava, Slovakia
  • Marek Bujdoš Comenius University, Faculty of Natural Sciences, Ilkovičova 6, 842 15 Bratislava, Slovakia

DOI:

https://doi.org/10.14311/AP.2024.64.0103

Keywords:

high-chromium steel, hyperfine interactions, Mössbauer spectrometry, atom probe tomography, stainless steel, ferritic-martensitic steel

Abstract

Oxide dispersion strengthened steels are key alloys used in nuclear installations. Steels with chromium content of up to 10 wt % are suitable due to their advantageous properties and these alloys are used for the construction of technological devices in the primary circuit of nuclear power plants. From other studies, it can be concluded that chromium has anti-corrosive properties due to the formation of a passivation layer, which results in reduced activation of the material by thermal neutrons. Macroscopic properties are determined by their microstructure, and therefore, the description of the microstructure is important. Transmission Mössbauer spectroscopy and atom probe tomography were used to characterise the material. This provides information about the physical and/or chemical environment of the resonant atoms can be obtained. Obtained spectral parameters reach saturation values from which the solubility limit of chromium in iron can be determined. In Cr-rich phase, the solubility limit can be estimated from the value of spectral parameters of the single-line in the spectrum annealed for the longest time. The suggested procedures are subsequently applied to the case studies of stainless steels suitable for the construction of various components of the III+/IVth generation of nuclear reactors (including fast and fusion reactors).

Downloads

Download data is not yet available.

References

J.-O. Nilsson. Super duplex stainless steels. Materials Science and Technology 8(8):685–700, 1992. https://doi.org/10.1179/mst.1992.8.8.685

D. Košovský, J. Dekan, K. Sedlačková, M. Miglierini. Microstructure of high-chromium ferritic-martensitic steels for next-generation reactors. Physica Status Solidi (B) 261(3):2300526, 2023. https://doi.org/10.1002/pssb.202300526

T. Kim, S. Noh, S. Kang, et al. Development of advanced radiation resistant ODS steel for fast reactor system applications. World Journal of Engineering and Technology 3(3C):125–128, 2015. https://doi.org/10.4236/wjet.2015.33C019

Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc. Development and characterisation of a new ODS ferritic steel for fusion reactor application. Journal of Nuclear Materials 393(1):114–119, 2009. https://doi.org/10.1016/j.jnucmat.2009.05.013

G. Sundararajan, R. Vijay, A. V. Reddy. Development of 9Cr ferritic-martensitic and 18Cr ferritic oxide dispersion strengthened steels. Current Science 105(8):1100–1106, 2013.

R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, D. Hoelzer. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. Journal of Nuclear Materials 341(2):103–114, 2005. https://doi.org/10.1016/j.jnucmat.2005.01.017

M. S. El-Genk, J.-M. Tournier. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems. Journal of Nuclear Materials 340(1):93–112, 2005. https://doi.org/10.1016/j.jnucmat.2004.10.118

K. Murty, I. Charit. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities. Journal of Nuclear Materials 383(1):189–195, 2008. https://doi.org/10.1016/j.jnucmat.2008.08.044

E. Lucon, A. Leenaers, W. Vandermeulen. Mechanical response of oxide dispersion strengthened (ODS) EUROFER97 after neutron irradiation at 300 °C. Fusion Engineering and Design 82(15):2438–2443, 2007. https://doi.org/10.1016/j.fusengdes.2007.05.018

S. Ahila, B. Reynders, H. J. Grabke. The evaluation of the repassivation tendency of Cr-Mn and Cr-Ni steels using scratch technique. Corrosion Science 38(11):1991–2005, 1996. https://doi.org/10.1016/S0010-938X(96)00092-3

J. W. Park, V. S. Rao, H. S. Kwon. Effects of nitrogen on the repassivation behavior of type 304L stainless steel in chloride solution. Corrosion 60(12):1099–1103, 2004. https://doi.org/10.5006/1.3299223

R. Sizmann. The effect of radiation upon diffusion in metals. Journal of Nuclear Materials 69–70:386–412, 1978. https://doi.org/10.1016/0022-3115(78)90256-8

C. Cabet, F. Dalle, E. Gaganidze, et al. Ferriticmartensitic steels for fission and fusion applications. Journal of Nuclear Materials 523:510–537, 2019. https://doi.org/10.1016/j.jnucmat.2019.05.058

L. Tan, Y. Katoh, A.-A. Tavassoli, et al. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service. Journal of Nuclear Materials 479:515–523, 2016. https://doi.org/10.1016/j.jnucmat.2016.07.054

F. Garner, M. Toloczko, B. Sencer. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. Journal of Nuclear Materials 276(1–3):123–142, 2000. https://doi.org/10.1016/S0022-3115(99)00225-1

M. B. Miglierini, L. Pašteka, M. Cesnek, et al. Influence of surface treatment on microstructure of stainless steels studied by Mössbauer spectrometry. Journal of Radioanalytical and Nuclear Chemistry 322(3):1495–1503, 2019. https://doi.org/10.1007/s10967-019-06737-w

V. Slugen, J. S. Veternikova, J. Degmova, et al. Positron annihilation studies of Eurofer97/ODS steels after helium ion implantation. Nuclear Materials and Energy 34:101369, 2023. https://doi.org/10.1016/j.nme.2023.101369

P. Grgac, R. Moravcik, M. Kusy, et al. Thermal stability of metastable austenite in rapidly solidified chromium-molybdenum-vanadium tool steel powder. Materials Science and Engineering: A 375–377:581–584, 2004. https://doi.org/10.1016/j.msea.2003.10.036

M. Kusy, P. Grgac, M. Behulova, et al. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy. Materials Science and Engineering: A 375–377:599–603, 2004. https://doi.org/10.1016/j.msea.2003.10.095

M. Miglierini. Austenite-to-martenzite transformations in ledebourite-type powder steels. Czechoslovak Journal of Physics 55(7):813–822, 2005. https://doi.org/10.1007/s10582-005-0083-1

M. Miglierini, A. Lančok, M. Kusý. Characterization of rapidly solidified powder of high-speed steel. Hyperfine Interactions 190(1):51–57, 2009. https://doi.org/10.1007/s10751-009-9921-z

A. Lančok, T. Kmječ, M. Štefánik, et al. Structural characterization of highly corrosion-resistant steel. Croatica Chemica Acta 88(4):355–361, 2016. https://doi.org/10.5562/cca2794

F. A. Garner, M. B. Toloczko, B. H. Sencer. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. Journal of Nuclear Materials 276(1):123–142, 2000. https://doi.org/10.1016/S0022-3115(99)00225-1

A. Kohyama, A. Hishinuma, D. S. Gelles, et al. Low-activation ferritic and martensitic steels for fusion application. Journal of Nuclear Materials 233–237:138–147, 1996. https://doi.org/10.1016/S0022-3115(96)00327-3

D. McClintock, M. Sokolov, D. Hoelzer, R. Nanstad. Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. Journal of Nuclear Materials 392(2):353–359, 2009. Nuclear Fuels and Structural Materials 2. https://doi.org/10.1016/j.jnucmat.2009.03.024

L. Tan, Y. Katoh, L. Snead. Development of castable nanostructured alloys as a new generation RAFM steels. Journal of Nuclear Materials 511:598–604, 2018. https://doi.org/10.1016/j.jnucmat.2018.05.024

E. Lucon, R. Chaouadi, M. Decréton. Mechanical properties of the european reference RAFM steel (EUROFER97) before and after irradiation at 300 °C. Journal of Nuclear Materials 329–333:1078–1082, 2004. https://doi.org/10.1016/j.jnucmat.2004.04.023

T. Yamamoto, G. R. Odette, H. Kishimoto, et al. On the effects of irradiation and helium on the yield stress changes and hardening and non-hardening embrittlement of ∼8Cr tempered martensitic steels: Compilation and analysis of existing data. Journal of Nuclear Materials 356(1):27–49, 2006. https://doi.org/10.1016/j.jnucmat.2006.05.041

E. Gaganidze, C. Petersen, E. Materna-Morris, et al. Mechanical properties and TEM examination of RAFM steels irradiated up to 70dpa in BOR-60. Journal of Nuclear Materials 417(1):93–98, 2011. https://doi.org/10.1016/j.jnucmat.2010.12.047

V. Kuksenko, C. Pareige, C. Genevois, P. Pareige. Characterisation of Cr, Si and P distribution at dislocations and grain-boundaries in neutron irradiated Fe-Cr model alloys of low purity. Journal of Nuclear Materials 434(1):49–55, 2013. https://doi.org/10.1016/j.jnucmat.2012.11.027

M. McLean. On the threshold stress for dislocation creep in particle strengthened alloys. Acta Metallurgica 33(4):545–556, 1985. https://doi.org/10.1016/0001-6160(85)90018-5

N. Wang, Y. Ji, Y. Wang, et al. Two modes of grain boundary pinning by coherent precipitates. Acta Materialia 135:226–232, 2017. https://doi.org/10.1016/j.actamat.2017.06.031

E. Arzt, D. Wilkinson. Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction. Acta Metallurgica 34(10):1893–1898, 1986. https://doi.org/10.1016/0001-6160(86)90247-6

B. Reppich. On the attractive particle-dislocation interaction in dispersion-strengthened material. Acta Materialia 46(1):61–67, 1998. https://doi.org/10.1016/S1359-6454(97)00234-6

A. Chauhan, D. Litvinov, Y. de Carlan, J. Aktaa. Study of the deformation and damage mechanisms of a 9Cr-ODS steel: Microstructure evolution and fracture characteristics. Materials Science and Engineering: A 658:123–134, 2016. https://doi.org/10.1016/j.msea.2016.01.109

J. Schröder, E. Arzt. Weak beam studies of dislocation/dispersoid interaction in an ODS superalloy. Scripta Metallurgica 19(9):1129–1134, 1985. https://doi.org/10.1016/0036-9748(85)90022-5

B. Ravelo, F. Vurpillot. Analysis of excitation pulsed signal propagation for atom probe tomography system. Progress In Electromagnetics Research Letters 47:61–70, 2014. https://doi.org/10.2528/PIERL14042403

Z. Foxman, O. Sobol, M. Pinkas, et al. Microstructural evolution of Cr-rich ODS steels as a function of heat treatment at 475 °C. Metallography, Microstructure, and Analysis 1(3):158–164, 2012. https://doi.org/10.1007/s13632-012-0028-6

Z. Száraz, G. Török, V. Kršjak, P. Hähner. SANS investigation of microstructure evolution in high chromium ODS steels after thermal ageing. Journal of Nuclear Materials 435(1–3):56–62, 2013. https://doi.org/10.1016/j.jnucmat.2012.12.016

J. Degmová, V. Kršjak, S. Sojak, et al. NDT study of precipitation processes in thermally aged Fe-20Cr alloy. Journal of Nuclear Materials 547:152799, 2021. https://doi.org/10.1016/j.jnucmat.2021.152799

D. Košovský, M. Miglierini, M. Pavúk, T. Kmječ. Surface features of binary Fe100−xCrx (1 ≤ x ≤ 50) alloys. AIP Conference Proceedings 2778(1):030006, 2023. https://doi.org/10.1063/5.0136328

S. M. Dubiel, J. Żukrowski. Kinetics of transformation, border of metastable miscibility gap in Fe-Cr alloy and limit of Cr solubility in iron at 858 K. Metallurgical and Materials Transactions A 54(8):3240–3248, 2023. https://doi.org/10.1007/s11661-023-07092-y

F. De Geuser, B. Gault. Metrology of small particles and solute clusters by atom probe tomography. Acta Materialia 188:406–415, 2020. https://doi.org/10.1016/j.actamat.2020.02.023

E. W. Müller, K. Bahadur. Field ionization of gases at a metal surface and the resolution of the field ion microscope. Physical Review 102:624–631, 1956. https://doi.org/10.1103/PhysRev.102.624

T. F. Kelly, M. K. Miller. Atom probe tomography. Review of Scientific Instruments 78(3):031101, 2007. https://doi.org/10.1063/1.2709758

T. Žák, Y. Jirásková. CONFIT: Mössbauer spectra fitting program. Surface and Interface Analysis 38(4):710–714, 2006. https://doi.org/10.1002/sia.2285

D. Košovský, M. Miglierini, M. Pavúk, et al. Mössbauer spectrometry of model binary Fe100−xCrx (1 ≤ x ≤ 50) alloys. Physica Status Solidi (B) 259(6):2100632, 2022. https://doi.org/10.1002/pssb.202100632

S. M. Dubiel, J. Zukrowski. Mössbauer effect study of charge and spin transfer in Fe-Cr. Journal of Magnetism and Magnetic Materials 23(2):214–228, 1981. https://doi.org/10.1016/0304-8853(81)90137-2

S. Dubiel, J. Żukrowski. Phase-decomposition-related short-range ordering in an Fe-Cr alloy. Acta Materialia 61(16):6207–6212, 2013. https://doi.org/10.1016/j.actamat.2013.07.003

R. Idczak, K. Idczak, R. Konieczny. Fe0.88Cr0.12 and Fe0.85Cr0.15 alloys exposed to air at 870K studied by TMS, CEMS and XPS. Physica B: Condensed Matter 528:27–36, 2018. https://doi.org/10.1016/j.physb.2017.10.082

R. Idczak, K. Idczak, R. Konieczny. Oxidation and surface segregation of chromium in Fe-Cr alloys studied by Mössbauer and X-ray photoelectron spectroscopy. Journal of Nuclear Materials 452(1):141–146, 2014. https://doi.org/10.1016/j.jnucmat.2014.05.003

R. Idczak, R. Konieczny, J. Chojcan. Atomic short-range order in Fe1−xCrx alloys studied by 57Fe Mössbauer spectroscopy. Journal of Physics and Chemistry of Solids 73(9):1095–1098, 2012. https://doi.org/10.1016/j.jpcs.2012.05.010

R. Konieczny, R. Idczak, J. Chojcan. Mössbauer studies of interactions between titanium atoms dissolved in iron. Hyperfine Interactions 219(1):121–127, 2013. https://doi.org/10.1007/s10751-012-0653-0

S. M. Dubiel, G. Inden. On the miscibility gap in the Fe-Cr system: A Mößbauer study on long term annealed alloys. International Journal of Materials Research 78(8):544–549, 1987. https://doi.org/doi:10.1515/ijmr-1987-780802

S. M. Dubiel, J. Cieslak. Short-range order in iron-rich Fe-Cr alloys as revealed by Mössbauer spectroscopy. Physical Review B 83:180202(R), 2011. https://doi.org/10.1103/PhysRevB.83.180202

S. M. Dubiel, J. Cieślak, H. Reuther. Effect of He+ irradiation on Fe-Cr alloys: Mössbauer-effect study. Journal of Nuclear Materials 434(1):235–239, 2013. Special Section on Spent Nuclear Fuel. https://doi.org/10.1016/j.jnucmat.2012.10.048

S. M. Dubiel, J. Żukrowski. Change of Cr atoms distribution in Fe85Cr15 alloy caused by 250keV He+ ion irradiation to different doses. Journal of Alloys and Compounds 624:165–169, 2015. https://doi.org/10.1016/j.jallcom.2014.11.070

R. Idczak, R. Konieczny, J. Chojcan. Atomic short-range order in Fe1−xCrx alloys studied by 57Fe Mössbauer spectroscopy. Journal of Physics and Chemistry of Solids 73(9):1095–1098, 2012. https://doi.org/10.1016/j.jpcs.2012.05.010

H. E. Kissinger. Reaction kinetics in differential thermal analysis. Analytical Chemistry 29(11):1702–1706, 1957. https://doi.org/10.1021/ac60131a045

S. M. Dubiel, J. Żukrowski. On the miscibility gap at 800K in the Fe-Cr alloy system. Materials Research Express 6(2):026568, 2018. https://doi.org/10.1088/2053-1591/aaf18d

S. M. Dubiel. Microscopic reasons for brittleness of high-chromium steels. Hyperfine Interactions 111(1):211–214, 1998. https://doi.org/10.1023/A:1012609918629

S. M. Dubiel. What can one learn about Fe-Cr alloys using Mössbauer spectroscopy? Critical Reviews in Solid State and Materials Sciences pp. 1–52, 2023. https://doi.org/10.1080/10408436.2023.2273462

Downloads

Published

2024-05-07

How to Cite

Košovský, D., Miglierini, M., Kmječ, T., Dekan, J., & Bujdoš, M. (2024). Precipitation of oxide dispersion strength steels after long-term annealing at temperature of 475 °C. Acta Polytechnica, 64(2), 103–117. https://doi.org/10.14311/AP.2024.64.0103

Issue

Section

Articles