Settlement of piles with negative skin friction: design approaches according to part 3 of Eurocode 7
DOI:
https://doi.org/10.14311/AP.2024.64.0588Keywords:
negative skin friction, load-settlement curves, pile settlement, pile design, soil settlement, Eurocode 7Abstract
Piles offer an effective solution for supporting structures in challenging ground conditions. However, ground settlement around deep foundations can induce negative skin friction, adding complexity to the geotechnical analysis and requiring careful consideration in both the pile settlement evaluation and structural integrity design. The article discusses the general recommendations provided by the informative annex of the revised Eurocode 7 version for designing piles subjected to negative skin friction. Using the Fellenius unified pile design concept, we provide a practical design framework for piles subjected to negative skin friction that extends the load-settlement curve methods proposed by Masopust, representing the standard pile design approaches in the Czech Republic. For examples presented, the introduced practical approach, also suitable for manual calculations, is in very good agreement with a refined calculation providing a nonlinear load-settlement curve.
Downloads
References
H. G. Poulos. Tall building foundations: Design methods and applications. Innovative Infrastructure Solutions 1(1):10, 2016. https://doi.org/10.1007/s41062-016-0010-2
H. G. Poulos, A. J. Davids. Foundation design for the emirates twin towers, dubai. Canadian Geotechnical Journal 42(3):716–730, 2005. https://doi.org/10.1139/t05-004
W. F. Baker, C. Brown, J. J. Pawlikowski, D. S. Rankin. Tall buildings and their foundations: Three examples. In Proceedings of the 7th International Conference on Case Histories in Geotechnical Engineering, pp. 1–10. Missouri University of Science and Technology, 2013.
T. J. Ingham, S. Rodriguez, R. Donikian, J. Chan. Seismic analysis of bridges with pile foundations. Computers & Structures 72(1–3):49–62, 1999. https://doi.org/10.1016/S0045-7949(99)00021-8
H. Matlock, L. C. Reese. Foundation analysis of offshore pile supported structures. In Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, pp. 91–97. 1961.
B. H. Fellenius. Basics of foundation design: Electronic edition. 2023. [2025-01-02]. https://www.fellenius.net/papers/444_The_Red_Book-Basics_of_Foundation_Design_2025.pdf
A. Plomp, W. C. v. Mierlo. Special problems, effects of drainage by well points on pile foundations. In Proceedings of 2nd International Conference on Soil Mechanics and Foundation Engineering, vol. 4, pp. 141–148. 1948.
I. J. Johannessen, L. Bjerrum. Measurement of the compression of a steel pile to rock due to settlement of the surrounding clay. In 6th International Conference on Soil Mechanics and Foundation Engineering, pp. 261–264. 1965.
M. A. Endo, A. Minou, I. Kawasaki, T. Shibata. Negative skin friction acting on steel pipe pile in clay. In Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, pp. 85–92. 1969.
B. H. Fellenius, B. B. Broms. Negative skin friction for long piles driven in clay. In Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, vol. 2, pp. 93–98. 1969.
B. H. Fellenius. Down-drag on piles in clay due to negative skin friction. Canadian Geotechnical Journal 9(4):323–337, 1972. https://doi.org/10.1139/t72-037
L. Bjerrum, I. J. Johannessen, O. Eide. Reduction of negative skin friction on steel piles to rock. In Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, pp. 27–34. 1969.
L. K. Walker, P. P. Le Darvall. Dragdown on coated and uncoated piles. In Proceedings of 8th International Conference on Soil Mechanics and Foundation Engineering, vol. 2, pp. 257–262. 1973.
B. H. Fellenius. Downdrag on bitumen coated piles. Journal of the Geotechnical Engineering Division 105(10):1262–1265, 1979.
F. M. Clemente. Downdrag on bitumen coated piles in a warm climate. In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, vol. 2, pp. 673–676. 1981.
T. Shibata, H. Sekiguchi, H. Yukitomo. Model test and analysis of negative friction acting on piles. Soils and Foundations 22(2):29–39, 1982. https://doi.org/10.3208/sandf1972.22.2_29
B. Indraratna, A. S. Balasubramaniam, P. Phamvan, Y. K. Wong. Development of negative skin friction on driven piles in soft Bangkok clay. Canadian Geotechnical Journal 29(3):393–404, 1992. https://doi.org/10.1139/t92-044
J. Thomas, M. Fahey, R. Jewell. Pile down-drag due to surface loading. In Centrifuge 98, pp. 507–512. CRC Press, 1998.
K. Tomisawa, J. Nishikawa. An evaluation of negative skin friction occurring on a pile foundation. In ISRM International Symposium, pp. ISRM–IS–2000–382. 2000.
C. F. Leung, B. K. Liao, Y. K. Chow, et al. Behavior of pile subject to negative skin friction and axial load. Soils and Foundations 44(6):17–26, 2004. https://doi.org/10.3208/sandf.44.6_17
C. W. W. Ng, H. G. Poulos, V. S. H. Chan, et al. Effects of tip location and shielding on piles in consolidating ground. Journal of Geotechnical and Geoenvironmental Engineering 134(9):1245–1260, 2008. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1245)
S. Y. Lam, C. W. W. Ng, C. F. Leung, S. H. Chan. Centrifuge and numerical modeling of axial load effects on piles in consolidating ground. Canadian Geotechnical Journal 46(1):10–24, 2009. https://doi.org/10.1139/T08-095
Z. Zhao, S. Ye, Y. Zhu, et al. Scale model test study on negative skin friction of piles considering the collapsibility of loess. Acta Geotechnica 17(2):601–611, 2022. https://doi.org/10.1007/s11440-021-01254-1
Y. Hong, C. W. W. Ng, Y. M. Chen, et al. Field study of downdrag and dragload of bored piles in consolidating ground. Journal of Performance of Constructed Facilities 30(3):04015050, 2016. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000790
L. Zeevaert. Reduction of point bearing capacity of piles because of negative friction. In Proceedings of the First Pan-American Conference on Soil Mechanics and Foundation Engineering, pp. 1145–1151. 1959.
E. M. Comodromos, S. V. Bareka. Evaluation of negative skin friction effects in pile foundations using 3D nonlinear analysis. Computers and Geotechnics 32(3):210–221, 2005. https://doi.org/10.1016/j.compgeo.2005.01.006
B. H. Fellenius. Negative skin friction and settlement of piles. In Proceedings of the Second International Seminar, Pile Foundations, pp. 1–12. Nanyang Technological Institute, 1984.
B. H. Fellenius. Unified design of piles and pile groups. Transportation Research Record 1169:75–82, 1988.
H. G. Poulos, N. S. Mattes. The analysis of downdrag in end-bearing piles. In Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, pp. 203–209. 1969.
R. D. Mindlin. Force at a point in the interior of a semi-infinite solid. Physics 7(5):195–202, 1936. https://doi.org/10.1063/1.1745385
H. G. Poulos, E. H. Davis, et al. Pile foundation analysis and design, vol. 397. Wiley New York, USA, 1980.
H. G. Poulos. Piles subjected to negative friction: A procedure for design. Geotechnical Engineering 28:23–44, 1997.
H. G. Poulos. A practical design approach for piles with negative friction. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 161(1):19–27, 2008. https://doi.org/10.1680/geng.2008.161.1.19
H. M. Coyle, L. C. Reese. Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundations Division 92(2):1–26, 1966. https://doi.org/10.1061/JSFEAQ.0000850
M. F. Randolph, C. P. Wroth. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division 104(12):1465–1488, 1978. https://doi.org/10.1061/AJGEB6.0000729
E. E. Alonso, A. Josa, A. Ledesma. Negative skin friction on piles: A simplified analysis and prediction procedure. Géotechnique 34(3):341–357, 1984. https://doi.org/10.1680/geot.1984.34.3.341
K. S. Wong, C. I. Teh. Negative skin friction on piles in layered soil deposits. Journal of Geotechnical Engineering 121(6):457–465, 1995. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:6(457)
C. I. Teh, K. S. Wong. Analysis of downdrag on pile groups. Géotechnique 45(2):191–207, 1995. https://doi.org/10.1680/geot.1995.45.2.191
W. D. Guo, M. F. Randolph. Rationality of load transfer approach for pile analysis. Computers and Geotechnics 23(1–2):85–112, 1998. https://doi.org/10.1016/S0266-352X(98)00010-X
M. Sutman, C. G. Olgun, L. Laloui. Cyclic load – transfer approach for the analysis of energy piles. Journal of Geotechnical and Geoenvironmental Engineering 145(1):04018101, 2019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001992
H. Song, H. Pei, J.-M. Pereira, et al. A simple load transfer method for energy pile groups. Computers and Geotechnics 159:105483, 2023. https://doi.org/10.1016/j.compgeo.2023.105483
W. Wu, Z. Wang, Y. Zhang, et al. Semi-analytical solution for negative skin friction development on deep foundations in coastal reclamation areas. International Journal of Mechanical Sciences 241:107981, 2023. https://doi.org/10.1016/j.ijmecsci.2022.107981
CEN/TC 250 SC7 European Committee for Standardization. prEN 1997-3. Eurocode 7: Geotechnical design – Part 3: Geotechnical structures, 2022.
W. Cao, Y. Chen, W. E. Wolfe. New load transfer hyperbolic model for pile-soil interface and negative skin friction on single piles embedded in soft soils. International Journal of Geomechanics 14(1):92–100, 2014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000289
R. P. Chen, W. H. Zhou, Y. M. Chen. Influences of soil consolidation and pile load on the development of negative skin friction of a pile. Computers and Geotechnics 36(8):1265–1271, 2009. https://doi.org/10.1016/j.compgeo.2009.05.011
H.-J. Kim, J. L. C. Mission. Development of negative skin friction on single piles: Uncoupled analysis based on nonlinear consolidation theory with finite strain and the load-transfer method. Canadian Geotechnical Journal 48(6):905–914, 2011. https://doi.org/10.1139/t11-004
J. Liu, H. Gao, H. Liu. Finite element analyses of negative skin friction on a single pile. Acta Geotechnica 7(3):239–252, 2012. https://doi.org/10.1007/s11440-012-0163-x
S. Jeong, J. Lee, C. J. Lee. Slip effect at the pile–soil interface on dragload. Computers and Geotechnics 31(2):115–126, 2004. https://doi.org/10.1016/j.compgeo.2004.01.009
P.-T. Simic-Silva, B. Martínez-Bacas, R. Galindo-Aires, D. Simic. 3D simulation for tunnelling effects on existing piles. Computers and Geotechnics 124:103625, 2020. https://doi.org/10.1016/j.compgeo.2020.103625
J.-S. Chiou, W.-T. Wei. Numerical investigation of pile-head load effects on the negative skin friction development of a single pile in consolidating ground. Acta Geotechnica 16(6):1867–1878, 2021. https://doi.org/10.1007/s11440-020-01134-0
R. Liang, Z.-Y. Yin, J.-H. Yin, P.-C. Wu. Numerical analysis of time-dependent negative skin friction on pile in soft soils. Computers and Geotechnics 155:105218, 2023. https://doi.org/10.1016/j.compgeo.2022.105218
CEN/TC 250 European Committee for Standardization. EN 1997-1. Eurocode 7: Geotechnical design – Part 1: General rules, 2004.
R. Driscoll, B. Simpson. EN1997 Eurocode 7: Geotechnical design. Proceedings of the Institution of Civil Engineers-Civil Engineering 144(6):49–54, 2001. https://doi.org/10.1680/cien.2001.144.6.49
S. A. Tan, B. H. Fellenius. Negative skin friction pile concepts with soil–structure interaction. Geotechnical Research 3(4):137–147, 2016. https://doi.org/10.1680/jgere.16.00006
J. Masopust. Vrtané piloty [In Czech; Bored piles]. Čeněk a Ježek s.r.o., 1994.
Z. Bazant, J. Masopust. Drilled pier design based on load-settlement curve. In Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, vol. 2, pp. 615–618. 1981.
J. Masopust. Design of axially loaded bored single piles. In Proceedings of the 4th International Seminar on Deep Foundations on Bored and Auger Piles, pp. 203–208. 2003.
J. Masopust. Design of axially loaded bored single piles in the Czech Republic. In Proceedings of the International Conference on Case Histories in Geotechnical Engineering. University of Missouri – Rolla, 2004. [2025-01-02]. https://scholarsmine.mst.edu/icchge/5icchge/session01/2
Úřad pro technickou normalizaci, metrologii a státní zkušebnictví. ČSN 73 1004. Navrhování základových konstrukcí – Stanovení požadavků pro výpočetní metody [In Czech; Geotechnical design – Foundations – Requirements for calculation methods], 2020.
V. Anderle, A. Zemanová, J. Masopust. Zohlednění vlivu negativního plášťového tření při výpočtu sedání pilot metodou regresních součinitelů [In Czech; Consideration of the effect of negative skin friction in the calculation of pile settlement by the method of regression coefficients]. In Sborník 51. konference Zakládání staveb Brno 2023, pp. 133–140. 2023.
A. Zemanová. Piles with NSF – supplementary code for results presented, 2023. [2023-12-22]. https://gitlab.com/zemanova.alena/piles-with-nsf
L. Li, J. Li, Y. Wang, W. Gong. Analysis of nonlinear load-displacement behaviour of pile groups in clay considering installation effects. Soils and Foundations 60(4):752–766, 2020. https://doi.org/10.1016/j.sandf.2020.04.008
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alena Zemanová, Vojtěch Anderle, Jan Masopust
This work is licensed under a Creative Commons Attribution 4.0 International License.