Influence of thermal and moisture ageing on the mechanical behaviour of conventional and polymer-modified asphalt mixtures

Authors

  • Mateus Valdevino de Siqueira Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil
  • Osires de Medeiros Melo Neto Federal University of Lavras, Department of Engineering, 37203-202 Lavras, Brazil
  • Leda Christiane de Figueiredo Lopes Lucena Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil
  • Izabelle Marie Trindade Bezerra Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil
  • Leonardo Rodrigues Guedes Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil
  • Albaniza Maria da Silva Lopes Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil
  • Arthur Felipe de Farias Monteiro Federal University of Campina Grande, Department of Civil Engineering, Aprígio Veloso 882, 58428-830 Campina Grande, Brazil

DOI:

https://doi.org/10.14311/AP.2025.65.0612

Keywords:

polymer-modified asphalt, adhesion failure, statistical analysis, chemical analysis, tropical climate effects

Abstract

This study aims to improve our understanding of how ageing affects the performance of asphalt mixtures used in pavements, focusing on two commonly applied binders: conventional Petroleum Asphalt Cement (PAC 50/70) and Polymer Modified Asphalt (PMA 55/75). Considering the tropical climate in Brazil, where temperature and moisture both play a crucial role in pavement durability, four ageing conditions were simulated: no ageing, short-term thermal ageing, long-term thermal ageing, and long-term thermal ageing combined with moisture exposure. The results indicate that ageing increases binder stiffness and improves resistance to permanent deformation, especially in polymer-modified mixtures. However, exposure to moisture reduces this resistance, primarily affecting mixtures with conventional binders as a result of adhesive failure. Statistical analysis confirms that there are significant differences in susceptibility to ageing between the two binder types. Overall, the polymer modification enhances the mixture is resilience against combined thermal and moisture ageing. These findings highlight the importance of incorporating realistic ageing scenarios and including moisture effects in laboratory evaluations to better predict the performance of pavements in tropical regions.

Downloads

Download data is not yet available.

References

P. Czajkowski, A. Przyjazny, G. Boczkaj. Bitumen aging – Laboratory simulation methods used in practice and selected directions of research on new methods. Materials 16(2):853, 2023. https://doi.org/10.3390/ma16020853

P. Barghabany, J. Zhang, L. N. Mohammad, et al. Chemical and rheological characterization of asphalt binders: A comparison of asphalt binder aging and asphalt mixture aging. Transportation Research Record 2676(5):147–157, 2022. https://doi.org/10.1177/03611981211067977

B. Hofko, M. Hospodka. Rolling thin film oven test and pressure aging vessel conditioning parameters: Effect on viscoelastic behavior and binder performance grade. Transportation Research Record 2574(1):111–116, 2016. https://doi.org/10.3141/2574-12

M. Hu, G. Sun, D. Sun, et al. Effect of thermal aging on high viscosity modified asphalt binder: Rheological property, chemical composition and phase morphology. Construction and Building Materials 241:118023, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118023

E. L. Omairey, F. Gu, Y. Zhang. An equation-based multiphysics modelling framework for oxidative ageing of asphalt pavements. Journal of Cleaner Production 280:124401, 2021. https://doi.org/10.1016/j.jclepro.2020.124401

Y. Qin, Y. Meng, J. Lei, et al. Study on the microscopic characteristics and rheological properties of thermal-oxidative aged and virgin-old recycled asphalts. European Polymer Journal 154:110499, 2021. https://doi.org/10.1016/j.eurpolymj.2021.110499

F. Safaei, J.-S. Lee, L. A. H. do Nascimento, et al. Implications of warm-mix asphalt on long-term oxidative ageing and fatigue performance of asphalt binders and mixtures. Road Materials and Pavement Design 15(sup1):45–61, 2014. https://doi.org/10.1080/14680629.2014.927050

B. T. Smith, I. L. Howard, W. S. Jordan III, et al. Comparing pressure aging vessel time to field aging of binder as a function of pavement depth and time. Transportation Research Record 2672(28):223–234, 2018. https://doi.org/10.1177/0361198118790836

A. M. da Silva Lopes, O. de Medeiros Melo Neto, L. C. de Figueiredo Lopes Lucena, et al. Impact of aging protocols on asphalt binder behavior: A laboratory and field study. Case Studies in Construction Materials 19:e02629, 2023. https://doi.org/10.1016/j.cscm.2023.e02629

H. Rahmani, H. Shirmohammadi, G. H. Hamedi. Effect of asphalt binder aging on thermodynamic parameters and its relationship with moisture sensitivity of asphalt mixes. Journal of Materials in Civil Engineering 30(11):04018278, 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002453

S.-C. Huang, R. Glaser, F. Turner. Impact of water on asphalt aging: Chemical aging kinetic study. Transportation Research Record 2293(1):63–72, 2012. https://doi.org/10.3141/2293-08

F. N. R. de Freitas, W. L. G. Ferreira, V. T. F. C. Branco. Avaliação da relação entre o dano por umidade e a permeabilidade de misturas asfálticas contendo cinza volante como fíler [In Portuguese; Evaluation of the relationship between moisture damage and the permeability of asphalt mixtures containing fly ash as filler]. Revista de Engenharia e Tecnologia 11(1):18–29, 2019. [2023-07-04]. https://revistas.uepg.br/index.php/ret/article/view/12587

D. B. Costa, O. de Medeiros Melo Neto, P. M. S. G. Luz, et al. Influence of aging, RAP content, and recycling agent on the performance of asphalt mixtures. Environmental Science and Pollution Research 31(1):1419–1441, 2024. https://doi.org/10.1007/s11356-023-31263-4

L. Xi, R. Luo, H. Liu. Evaluating the influence of humidity on asphalt mixture performance by the flow number test. Construction and Building Materials 284:122754, 2021. https://doi.org/10.1016/j.conbuildmat.2021.122754

A. Izadi, M. Motamedi, R. Alimi, M. Nafar. Effect of aging conditions on the fatigue behavior of hot and warm mix asphalt. Construction and Building Materials 188:119–129, 2018. https://doi.org/10.1016/j.conbuildmat.2018.08.119

H. Ziari, A. Amini, A. Goli. The effect of different aging conditions and strain levels on relationship between fatigue life of asphalt binders and mixtures. Construction and Building Materials 244:118345, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118345

S. Wang, W. Huang, A. Kang. Evaluation of aging characteristics of high-viscosity asphalt: Rheological properties, rutting resistance, temperature sensitivity, homogeneity, and chemical composition. Journal of Materials in Civil Engineering 33(7):04021149, 2021. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003777

H. Wang, Y. Zhu, W. Zhang, et al. Effects of field aging on material properties and rutting performance of asphalt pavement. Materials 16(1):225, 2023. https://doi.org/10.3390/ma16010225

S. Yang, A. Braham, L. Wang, Q. Wang. Influence of aging and moisture on laboratory performance of asphalt concrete. Construction and Building Materials 115:527–535, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.063

H. R. Radeef, N. Abdul Hassan, A. R. Zainal Abidin, et al. Effect of aging and moisture damage on the cracking resistance of rubberized asphalt mixture. Materials Today: Proceedings 42:2853–2858, 2021. https://doi.org/10.1016/j.matpr.2020.12.734

J. Wu, Y. Wang, Q. Liu, et al. Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions. Construction and Building Materials 238:117694, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117694

ASTM. Standard test method for relative density (specific gravity) and absorption of coarse aggregate. Tech. Rep. ASTM C127-15, 2015. https://doi.org/10.1520/C0127-15

ASTM. Standard test method for flat particles, elongated particles, or flat and elongated particles in coarse aggregate. Tech. Rep. ASTM D4791-19, 2019. https://doi.org/10.1520/D4791-19

ASTM. Standard test method for sand equivalent value of soils and fine aggregate. Tech. Rep. ASTM D2419-14, 2014. https://doi.org/10.1520/D2419-14

ASTM. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. Tech. Rep. ASTM C131/C131M-20, 2020. https://doi.org/10.1520/C0131_C0131M-20

ASTM. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. Tech. Rep. ASTM D6913-04(2009)e1, 2009. https://doi.org/10.1520/D6913-04R09E01

D. Beserra Costa, O. de Medeiros Melo Neto, L. Christiane de Figueiredo Lopes Lucena, et al. Effects of recycling agents and methods on the fracture and moisture resistance of asphalt mixtures with high RAP contents. Construction and Building Materials 367:130312, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130312

O. de Medeiros Melo Neto, I. Minervina Silva, L. C. de Figueiredo Lopes Lucena, et al. Viability of recycled asphalt mixtures with soybean oil sludge fatty acid. Construction and Building Materials 349:128728, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128728

O. de Medeiros Melo Neto, L. C. de Figueiredo Lopes Lucena, I. M. Silva, et al. Effects of the addition of fatty acid from soybean oil sludge in recycled asphalt mixtures. Environmental Science and Pollution Research 30(17):50174–50197, 2023. https://doi.org/10.1007/s11356-023-25808-w

A. J. R. da Silva, A. E. de Figueiredo Lopes Lucena, O. de Medeiros Melo Neto, et al. Effects of using waste high-density polyethylene on the rheological, mechanical, and thermal performance of asphalt materials. Environment, Development and Sustainability 26(7):16683–16710, 2024. https://doi.org/10.1007/s10668-023-03306-w

A. M. G. D. Mendonça, O. de Medeiros Melo Neto, J. K. G. Rodrigues, et al. Characterisation of modified asphalt mixtures with lignin of pinus and eucalyptus woods. Australian Journal of Civil Engineering 21(2):253–264, 2023. https://doi.org/10.1080/14488353.2022.2089376

T. R. Porto, A. E. de Figueiredo Lopes Lucena, T. M. R. P. de Moraes, et al. The use of iron oxide in asphalt mixtures to reduce the effects of urban heat islands. Case Studies in Construction Materials 18:e01709, 2023. https://doi.org/10.1016/j.cscm.2022.e01709

T. M. R. P. de Moraes, A. E. de Figueirêdo Lopes Lucena, O. de Medeiros Melo Neto, et al. Efeitos do uso da cera de carnaúba como aditivo redutor de temperaturas de mistura e compactação no desempenho mecânico de misturas asfálticas [In Portuguese; Effects of the use of carnauba wax as a reducing additive on mixing and compaction temperatures in the mechanical performance of asphalt mixtures]. Matéria (Rio de Janeiro) 27(4):e20220192, 2022. https://doi.org/10.1590/1517-7076-RMAT-2022-0192

G. K. A. Cruz, O. de Medeiros Melo Neto, S. M. Arruda, et al. Influence of particle size selection methods on asphalt mixtures produced with lateritic aggregates. Construction and Building Materials 314:125201, 2022. https://doi.org/10.1016/j.conbuildmat.2021.125201

DNER 078. Aderência de agregado graúdo ao ligante betuminoso [In Portuguese; Coarse aggregate – adhesion to bituminous binder], 1994.

S. Zhang, R. Li, J. Pei. Evaluation methods and indexes of morphological characteristics of coarse aggregates for road materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition) 6(3):256–272, 2019. https://doi.org/10.1016/j.jtte.2019.01.003

ASTM. Standard test method for preparation and determination of the relative density of asphalt mix specimens by means of the superpave gyratory compactor. Tech. Rep. ASTM D6925-15, 2015. https://doi.org/10.1520/D6925-15

Y. R. Kim, C. Castorena, M. Elwardany, et al. Long-term aging of asphalt mixtures for performance testing and prediction. The National Academies Press, Washington, DC, 2017. https://doi.org/10.17226/24959

AASHTO. Standard practice for laboratory conditioning of asphalt mixtures. Tech. Rep. AASHTO R 30-22, 2022. [2022-08-20]. https://global.ihs.com/doc_detail.cfm?document_name=AASHTO%20R%2030&item_s_key=00488905

ASTM. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Tech. Rep. ASTM D4402, 2015. [2022-08-20]. https://www.astm.org/astm-tpt-721.html

ASTM. Standard specification for performance-graded asphalt binder. Tech. Rep. ASTM D6373-21, 2021. https://doi.org/10.1520/D6373-21

J. Zhang, Z. Fan, D. Hu, et al. Evaluation of asphalt-aggregate interaction based on the rheological properties. International Journal of Pavement Engineering 19(7):586–592, 2018. https://doi.org/10.1080/10298436.2016.1199868

S. D. Asukar, A. Behl, P. J. Gundaliya. Utilization of lignin as an antioxidant in asphalt binder. International Journal of Innovative Research in Technology 2(12):198–207, 2016.

ASTM. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. Tech. Rep. ASTM D7405-20, 2020. https://doi.org/10.1520/D7405-20

AASHTO. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. Tech. Rep. AASHTO T 391-20, 2020. [2023-08-31]. https://global.ihs.com/doc_detail.cfm?&document_name=AASHTO%20T%20391&item_s_key=00822231&item_key_date=791231

DNIT. Pavimentação – Misturas asfálticas – Ensaio uniaxial de carga repetida para determinação da resistência à deformação permanente – Método de ensaio [In Portuguese; Paving – Asphalt mixtures – Uniaxial repeated load test for determining permanent deformation resistance – Test method]. Tech. Rep. DNIT 184, 2018.

DNIT. Pavimentação asfáltica – Misturas asfálticas – Determinação da resistência à tração por compressão diametral – Método de ensaio [In Portuguese; Asphalt pavement – Asphalt mixtures – Determination of tensile strength by diametral compression – Test method]. Tech. Rep. DNIT 136, 2018.

DNIT. Pavimentação – Misturas asfálticas – Determinação do dano por umidade induzida – Método de ensaio [In Portuguese; Paving – Asphalt mixtures determination of moisture-induced damage – Test method]. Tech. Rep. DNIT 180, 2018.

DNIT. Pavimentação asfáltica – Misturas asfálticas – Determinação do módulo de resiliência – Método de ensaio [In Portuguese; Asphalt pavement – Asphalt mixtures – Determination of the resilient modulus – Test method]. Tech. Rep. DNIT 135, 2018. [2022-08-20]. https://pt.scribd.com/document/462947290/Norma-DNIT-135-2018-ME

DNIT. Pavimentação asfáltica – Misturas asfálticas – determinação do módulo dinâmico – Método de ensaio [In Portuguese]. Tech. Rep. DNIT 416, 2019.

AASHTO. Standard specification for performance-graded asphalt binder. Tech. Rep. AASHTO M 320-21, 2021. [2022-09-23]. https://www.techstreet.com/standards/aashto-m-320-21?product_id=2229878

M. M. Takahashi. Avaliação do envelhecimento e rejuvenescimento de ligantes asfálticos [In Portuguese; Evaluation of aging and rejuvenation of asphalt binders]. Master’s thesis, Universidade de São Paulo, Brazil, 2020. https://doi.org/10.11606/D.3.2020.tde-25012021-101332

W. S. Mogawer, A. Booshehrian, S. Vahidi, A. J. Austerman. Evaluating the effect of rejuvenators on the degree of blending and performance of high RAP, RAS, and RAP/RAS mixtures. Road Materials and Pavement Design 14(sup2):193–213, 2013. https://doi.org/10.1080/14680629.2013.812836

A. T. Martins. Contribution to the validation of the fatigue damage test for asphalt binders, Federal University of Rio de Janeiro, 2018.

D. A. Gama, J. M. Rosa Júnior, T. J. A. de Melo, J. K. G. Rodrigues. Rheological studies of asphalt modified with elastomeric polymer. Construction and Building Materials 106:290–295, 2016. https://doi.org/10.1016/j.conbuildmat.2015.12.142

P. G. T. Marinho Filho. Avaliação reológica de ligantes asfálticos modificados com nanopartículas de dióxido de titânio [In Portuguese; Rheological evaluation of asphalt binders modified with titanium dioxide nanoparticles]. Master’s thesis, Universidade Federal de Campina Grande, Brazil, 2017. [2023-07-04]. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/374

E. DuBois, Y. Mehta, A. Nolan. Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder. Construction and Building Materials 65:184–190, 2014. https://doi.org/10.1016/j.conbuildmat.2014.04.111

R. A. Tarefder, S. S. Yousefi. Rheological examination of aging in polymer-modified asphalt. Journal of Materials in Civil Engineering 28(2):04015112, 2016. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001370

L. A. H. Nascimento. Petrobras presentation – New transfer function. Meeting on 2021-08-16, 2021.

A. Anitelli. Estudo do dano por umidade de misturas densas com ligantes asfálticos convencional e modificado com polímero SBS [In Portuguese; Study of moisture damage of conventional and polymer modified asphalt mixtures]. Master’s thesis, Escola de Engenharia de São Carlos, Brazil, 2013. https://doi.org/10.11606/D.18.2013.tde-17102013-100748

P. K. Das, H. Baaj, N. Kringos, S. Tighe. Coupling of oxidative ageing and moisture damage in asphalt mixtures. Road Materials and Pavement Design 16(sup1):265–279, 2015. https://doi.org/10.1080/14680629.2015.1030835

L. A. H. do Nascimento. Nova abordagem da dosagem de misturas asfálticas densas com uso do compactador giratório e foco na deformação permanente [In Portuguese; New approach to dosing dense asphalt mixtures with the use of a rotary compactor and a focus on permanent deformation]. Master’s thesis, Federal University of Rio de Janeiro, 2008. [2022-08-25]. http://objdig.ufrj.br/60/teses/coppe_m/LuisAlbertoHerrmannDoNascimento.pdf

J. B. dos Santos Bastos, J. B. Soares, L. A. H. Nascimento. Critérios para os resultados do ensaio uniaxial de carga repetida de misturas asfálticas em laboratório a partir do desempenho em campo. Transportes 25(2):19–40, 2017. https://doi.org/10.14295/transportes.v25i2.1284

C. Faccin. Concretos asfálticos em utilização no Rio Grande do Sul: comportamento mecânico e desempenho em campo quanto à deformação permanente [In Portuguese; Asphalt concrete in use in Rio Grande do Sul: mechanical behavior and performance in the field regarding permanent deformation]. Master’s thesis, Federal University of Santa Catarina, Brazil, 2018. [2022-11-16]. http://repositorio.ufsm.br/handle/1/15888

A. K. Apeagyei. Rutting as a function of dynamic modulus and gradation. Journal of Materials in Civil Engineering 23(9):1302–1310, 2011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000309

M. R. Islam, M. I. Hossain, R. A. Tarefder. A study of asphalt aging using indirect tensile strength test. Construction and Building Materials 95:218–223, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.159

S. S. Islam, R. N. G. D. Ransinchung, S. S. Ravindranath. Performance evaluation of long-term laboratory-aged asphalt mixtures containing different molecular structures of SBS copolymers. Journal of Materials in Civil Engineering 35(7):04023191, 2023. https://doi.org/10.1061/JMCEE7.MTENG-15368

J. C. Petersen, R. Glaser. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Materials and Pavement Design 12(4):795–819, 2011. https://doi.org/10.1080/14680629.2011.9713895

S. M. Arruda. Avaliação do comportamento mecânico e autorregenerativo de misturas asfálticas recicladas [In Portuguese; Evaluation of the mechanical behavior of recycled asphalt mixtures]. Master’s thesis, Universidade Federal de Campina Grande, Brazil, 2021. [2022-08-20]. http://dspace.sti.ufcg.edu.br/jspui/handle/riufcg/21821

S. M. Arruda. Análise do envelhecimento, rigidez e suscetibilidade á presença de água em misturas recicladas com adição de agentes de reciclagem [In Portuguese; Analysis of aging, stiffness and susceptibility to the presence of water in recycled mixtures with the addition of recycling agents]. Master’s thesis, Universidade Federal de Campina Grande, Brazil, 2022. [2023-07-04]. https://dspace.sti.ufcg. edu.br/jspui/handle/riufcg/27481

Z. Zhang, S. Han, X. Han, et al. Performance changes of hot recycled asphalt mixture in different layers under coupling of multiple aging factors. Construction and Building Materials 269:121343, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121343

Downloads

Published

2026-01-15

Issue

Section

Articles

How to Cite

de Siqueira, M. V., de Medeiros Melo Neto, O., de Figueiredo Lopes Lucena, L. C., Bezerra, I. M. T., Rodrigues Guedes , L., Lopes, A. M. da S., & Monteiro , A. F. de F. (2026). Influence of thermal and moisture ageing on the mechanical behaviour of conventional and polymer-modified asphalt mixtures. Acta Polytechnica, 65(6), 612–639. https://doi.org/10.14311/AP.2025.65.0612