Experimental investigation of an entropy production in a linear blade cascade

Authors

  • Erik Flídr Czech Aerospace Research Centre, Laboratory of High-Speed Aerodynamics, Beranových 130, 199 00 Prague, Czech Republic

DOI:

https://doi.org/10.14311/AP.2024.64.0350

Keywords:

entropy production, linear blade cascade, experimental research

Abstract

The vortical structures in turbomachinery are crucial phenomena that significantly impact the machine’s efficiency. Therefore, investigating them is essential for a better understanding of the machine’s operation.
The presented paper focuses on an experimental investigation of entropy production in a linear blade cascade composed of prismatic blades for two pitch-to-chord ratios, t/c = 0.6, and 0.9. The effects of the inlet flow angle, α1 = −20°, 5°, 30°, and outlet isentropic Reynolds number, Re2,is = (0.8, 1.2, 2.5, and 4.5) × 105, are examined based on pressure measurements.
Entropy production is evaluated as a balance of fluxes through the inlet and outlet boundaries of the control volume. The paper provides a detailed discussion of the local distribution of entropy production and vorticity in the flow field, as well as their evolution with the tested parameters. The correlations between the integral values of entropy production and the tested parameters are also given.

Downloads

Download data is not yet available.

References

C. Yogananda, A. Einstein. The cause of the formation of meanders in the courses of rivers and of the so-called Baer’s law. Resonance 5:105–108, 2000. https://doi.org/10.1007/BF02839006

W. Dean. XVI. Note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4(20):208–223, 1927. https://doi.org/10.1080/14786440708564324

W. R. Hawthorne. Secondary circulation in fluid flow. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 206(1086):374–387, 1951. https://doi.org/10.1098/rspa.1951.0076

W. R. Hawthorne. Rotational flow through cascades part I – The components of vorticity. The Quarterly Journal of Mechanics and Applied Mathematics 8(3):266–279, 1955. https://doi.org/10.1093/qjmam/8.3.266

A. W. Marris. The generation of secondary vorticity in an incompressible fluid. Journal of Applied Mechanics 30(4):525–531, 1963. https://doi.org/10.1115/1.3636613

A. W. Marris. On the generation of secondary velocity along a vortex line. Journal of Basic Engineering 86(4):815–818, 1964. https://doi.org/10.1115/1.3655961

A. W. Marris. Generation of secondary vorticity in a stratified fluid. Journal of Fluid Mechanics 20(2):177–181, 1964. https://doi.org/10.1017/S0022112064001124

A. W. Marris. Secondary flows in an incompressible fluid of varying density in a rotating reference frame. Journal of Basic Engineering 88(2):533–537, 1966. https://doi.org/10.1115/1.3645894

A. W. Marris, S. L. Passman. Vector fields and flows on developable surfaces. Archive for Rational Mechanics and Analysis 32(1):29–86, 1969. https://doi.org/10.1007/BF00253256

B. Lakshminarayana, J. H. Horlock. Generalized expressions for secondary vorticity using intrinsic co-ordinates. Journal of Fluid Mechanics 59(1):97–115, 1973. https://doi.org/10.1017/S0022112073001448

L. S. Langston, M. L. Nice, R. M. Hooper. Three-dimensional flow within a turbine cascade passage. Journal of Engineering for Power 99(1):21–28, 1977. https://doi.org/10.1115/1.3446247

L. S. Langston. Crossflows in a turbine cascade passage. Journal of Engineering for Power 102(4):866–874, 1980. https://doi.org/10.1115/1.3230352

C. H. Sieverding, P. Van den Bosche. The use of coloured smoke to visualize secondary flows in a turbineblade cascade. Journal of Fluid Mechanics 134:85–89, 1983. https://doi.org/10.1017/S0022112083003237

H. P. Wang, S. J. Olson, R. J. Goldstein, E. R. G. Eckert. Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery 119(1):1–8, 1997. https://doi.org/10.1115/1.2841006

H. P. Hodson, R. G. Dominy. The off-design performance of a low-pressure turbine cascade. Journal of Turbomachinery 109(2):201–209, 1987. https://doi.org/10.1115/1.3262086

L. Chen, S. L. Dixon. Growth of secondary flow losses downstream of a turbine blade cascade. In Proceedings of the ASME 1985 Beijing International Gas Turbine Symposium and Exposition, vol. 1. 1985. https://doi.org/10.1115/85-IGT-35

E. Rosa de la Blanco, H. P. Hodson, R. Vazquez, D. Torre. Influence of the state of the inlet endwall boundary layer on the interaction between pressure surface separation and endwall flows. In Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 217, pp. 433–441. 2003. https://doi.org/10.1243/095765003322315496

A. Perdichizzi, M. Ubaldi, P. Zunino. Reynolds stress distribution downstream of a turbine cascade. Experimental Thermal and Fluid Science 5(3):338–350, 1992. https://doi.org/10.1016/0894-1777(92)90079-K

H. P. Hodson, R. G. Dominy. Three-dimensional flow in a low-pressure turbine cascade at its design condition. Journal of Turbomachinery 109(2):177–185, 1987. https://doi.org/10.1115/1.3262083

A. Perdichizzi, V. Dossena. Incidence angle and pitch–chord effects on secondary flows downstream of a turbine cascade. Journal of Turbomachinery 115(3):383–391, 1993. https://doi.org/10.1115/1.2929265

E. Flídr, T. Jelínek, M. Kladrubský. Experimental investigation of effects of Reynolds number and incidence angle on secondary flow within a linear blade cascade. Journal of Thermal Science 30(6):2122–2136, 2021. https://doi.org/10.1007/s11630-021-1455-y

C. H. Sieverding. Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages. Journal of Engineering for Gas Turbines and Power 107(2):248–257, 1985. https://doi.org/10.1115/1.3239704

P. Ligrani, G. Potts, A. Fatemi. Endwall aerodynamic losses from turbine components within gas turbine engines. Propulsion and Power Research 6(1):1–14, 2017. https://doi.org/10.1016/j.jppr.2017.01.006

D. Šimurda, J. Fürst, J. Hála, et al. Near-wall flow in the blade cascades representing last rotor root section of large output steam turbines. Journal of Thermal Science 30(1):220–230, 2021. https://doi.org/10.1007/s11630-020-1246-x

D. Šimurda, J. Fürst, M. Luxa. 3D flow past transonic turbine cascade SE 1050 – Experimental and numerical simulations. Journal of Thermal Science 22(4):311–319, 2013. https://doi.org/10.1007/s11630-013-0629-7

GUM. Guide to the expression of uncertainty in measurement (GUM)-Supplement 1: Numerical methods for the propagation of distributions. International Organization for Standardization, (1995).

F. A. MacMillan. Experiments on Pitot-tubes in shear flow. Tech. rep., Ministry of Supply, 1956.

B. McKeon, J. Li, W. Jiang, et al. Pitot probe corrections in fully developed turbulent pipe flow. Measurement Science and Technology 14(8):1449–1458, 2003. https://doi.org/10.1088/0957-0233/14/8/334

S. C. C. Bailey, M. Hultmark, J. P. Monty, et al. Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. Journal of Fluid Mechanics 715:642–670, 2013. https://doi.org/10.1017/jfm.2012.538

E. Flídr, T. Jelínek, M. Kladrubský. Boundary layer investigation at the inlet of a linear balde cascade. In Topical Problems of Fluid Mechanics, pp. 83–90. (2018). https://doi.org/10.14311/TPFM.2018.011

P. Asinari, E. Chiavazzo. Overview of the entropy production of incompressible and compressible fluid dynamics. Meccanica 51(5):1245–1255, 2016. https://doi.org/10.1007/s11012-015-0284-z

E. Flídr. Derivation of entropy production in a fluid flow in a general curvilinear coordiante system. Acta Polytechnica 63(2):103–110, 2023. https://doi.org/10.14311/AP.2023.63.0103

Downloads

Published

2024-09-08

Issue

Section

Articles

How to Cite

Flídr, E. (2024). Experimental investigation of an entropy production in a linear blade cascade. Acta Polytechnica, 64(4), 350-359. https://doi.org/10.14311/AP.2024.64.0350