Carbon Circuits in Polymers

V. Bouda, J. Hampl, J. Kábrt, J. Lipták, F. Novák, V. Pícha, J. Rajman, J. Sedláček

Abstract


Selectively processed areas in polymer layers or foils can form fine carbon circuits of a substantially enhanced conductivity. The state of the CB-particles (and the local plastic’s conductivity) can be changed by the short-range-displacements of the CB-particles that control the internal contacts of the circuit. Several examples of the potentiality of such processing routes are presented. A melt of the CB-plastic in the uni-directional electrical field increases its conductivity rapidly by several orders of magnitude [1]. Cooling down the composite melt into the solid state results in an abrupt decrease of conductivity. The intensity of the conductivity decrease depends on the conditions of the cooling regime [2]. The percolation-like transition can be induced by special processing route of a composite melt that has a lower CB concentration than the theoretical percolation threshold [3].

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 1210-2709 (Print)
ISSN 1805-2363 (Online)
Published by the Czech Technical University in Prague