Assessment of the effects of UV-A exposure on the mechanical strength of offshore mooring multifilaments
DOI:
https://doi.org/10.14311/AP.2024.64.0487Keywords:
tensile testing, mechanical characterisation, ultraviolet incidence, degradation, synthetic fibres, yarn break load, curve fitting modellingAbstract
The offshore industry faces significant challenges in the dynamic energy and maritime domain, necessitating robust engineering solutions for mooring systems. This study investigates the impact of ultraviolet radiation A (UV-A) on the mechanical strength of high-strength multifilaments, crucial for offshore mooring. Five fibre types: Aramid, High-modulus polyethylene (HMPE), Liquid crystal polymers (LCP), Polyamide and Polyester, are exposed to UV-A for up to 28 days. Initial mechanical characterisation provides baseline data, while subsequent tests reveal varying degrees of degradation. Polyamide and polyester exhibit superior stability, while Aramid and HMPE show restrained degradation. LCP experiences substantial degradation. Mathematical modelling reveals distinct degradation patterns, emphasising the need for comprehensive understanding in ensuring the safety and efficiency of offshore operations. There are indications that degradation by ultraviolet exposure for Aramid, HMPE, polyamide, and polyester fibres, restricts the constitutive behaviour in terms of strength and extension, but without changing the shape of the curve. These findings provide valuable insights for the offshore industry and guidance future research and development efforts.
Downloads
References
C. J. M. Del Vecchio. Light weight materials for deep water moorings. Ph.D. thesis, University of Reading, UK, 1992.
M. M. Winkler, H. A. McKenna. The polyester rope taut leg mooring concept: A feasible means for reducing deepwater mooring cost and improving stationkeeping performance. In Offshore Technology Conference, pp. OTC–7708–MS. Texas, USA, 1995. https://doi.org/10.4043/7708-MS
H. A. McKenna, J. W. S. Hearle, N. O’Hear. Handbook of fibre rope technology, vol. 34. Woodhead Publishing, UK, 2004.
E. L. V. Louzada, C. E. M. Guilherme, F. T. Stumpf. Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads. Acta Polytechnica CTU Proceedings 7:76–78, 2016. https://doi.org/10.14311/APP.2017.7.0076
C. Wibner, T. Versavel, I. Masetti. Specifying and testing polyester mooring rope for the barracuda and caratinga FPSO deepwater mooring systems. In Offshore Technology Conference, pp. OTC–15139–MS. Texas, USA, 2003. https://doi.org/10.4043/15139-MS
S. J. Banfield, N. F. Casey, R. Nataraja. Durability of polyester deepwater mooring rope. In Offshore Technology Conference, pp. OTC–17510–MS. Texas, USA, 2005. https://doi.org/10.4043/17510-MS
T. M. Schmidt, C. Bianchini, M. M. C. Forte, et al. Socketing of polyester fibre ropes with epoxy resins for deep-water mooring applications. Polymer Testing 25(8):1044–1051, 2006. https://doi.org/10.1016/j.polymertesting.2006.07.003
P. Davies, P. Baron, K. Salomon, et al. Influence of fibre stiffness on deepwater mooring line response. In 27th International Conference on Offshore Mechanics and Arctic Engineering, pp. 179–187. Portugal, 2008. https://doi.org/10.1115/OMAE2008-57147
A. Tahar, D. Sidarta, A. Ran. Dual stiffness approach for polyester mooring line analysis in time domain. In 31st International Conference on Ocean, Offshore and Arctic Engineering, pp. 513–521. Brazil, 2012. https://doi.org/10.1115/OMAE2012-83662
C. T. Kwan, P. Devlin, P.-L. Tan, K. Huang. Stiffness modeling, testing, and global analysis for polyester mooring. In 31st International Conference on Ocean, Offshore and Arctic Engineering, pp. 777–785. Brazil, 2012. https://doi.org/10.1115/OMAE2012-84159
M. B. Bastos. Improved high tenacity/high modulus polyester for stiffer mooring ropes. In 2013 MTS/IEEE OCEANS – Bergen, pp. 1–5. Bergen, Norway, 2013. https://doi.org/10.1109/OCEANSBergen.2013.6607949
S. Xu, S. Wang, H. Liu, et al. Experimental evaluation of the dynamic stiffness of synthetic fibre mooring ropes. Applied Ocean Research 112:102709, 2021. https://doi.org/10.1016/j.apor.2021.102709
S. R. Ghoreishi, P. Cartraud, P. Davies, T. Messager. Analytical modeling of synthetic fiber ropes subjected to axial loads. Part I: A new continuum model for multilayered fibrous structures. International Journal of Solids and Structures 44(9):2924–2942, 2007. https://doi.org/10.1016/j.ijsolstr.2006.08.033
S. R. Ghoreishi, P. Davies, P. Cartraud, T. Messager. Analytical modeling of synthetic fiber ropes. Part II: A linear elastic model for 1 + 6 fibrous structures. International Journal of Solids and Structures 44(9):2943–2960, 2007. https://doi.org/10.1016/j.ijsolstr.2006.08.032
A. Tahar, M. H. Kim. Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Engineering 35(17–18):1676–1685, 2008. https://doi.org/10.1016/j.oceaneng.2008.09.004
J. Davidson, J. V. Ringwood. Mathematical modelling of mooring systems for wave energy converters – A review. Energies 10(5):666, 2017. https://doi.org/10.3390/en10050666
S. D. Weller, S. J. Banfield, J. Canedo. Parameter estimation for synthetic rope models. In 37th International Conference on Ocean, Offshore and Arctic Engineering, pp. OMAE2018–78606. Spain, 2018. https://doi.org/10.1115/OMAE2018-78606
J. F. Beltran, E. B. Williamson. Numerical simulation of damage localization in polyester mooring ropes. Journal of Engineering Mechanics 136(8):945–959, 2010. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000129
J. F. Beltran, E. B. Williamson. Numerical procedure for the analysis of damaged polyester ropes. Engineering Structures 33(5):1698–1709, 2011. https://doi.org/10.1016/j.engstruct.2011.02.007
W. Huang, H. Liu, Y. Lian, L. Li. Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings. Applied Ocean Research 39:113–120, 2013. https://doi.org/10.1016/j.apor.2012.10.004
L. Xiong, X. Li, J. Yang, W. Lu. Numerical simulation of nonlinearity and viscoelasticity of synthetic fibre rope for taut moorings in deep water. Ships and Offshore Structures 13(2):132–142, 2017. https://doi.org/10.1080/17445302.2017.1328757
I. Ćatipović, N. Alujević, S. Rudan, V. Slapničar. Numerical modelling for synthetic fibre mooring lines taking elongation and contraction into account. Journal of Marine Science and Engineering 9(4):417, 2021. https://doi.org/10.3390/jmse9040417
D. M. da Cruz, C. E. M. Guilherme, F. T. Stumpf, M. B. Bastos. Numerical assessment of mechanical behavior of mooring lines using hybrid synthetic fiber-rope segments. In Offshore Technology Conference, pp. OTC–31906–MS. Texas, USA, 2022. https://doi.org/10.4043/31906-MS
F. T. Stumpf, C. E. M. Guilherme, D. M. da Cruz, et al. A general constitutive model for the numerical simulation of different synthetic fibres used in offshore mooring. Ships and Offshore Structures 18(9):1338–1344, 2023. https://doi.org/10.1080/17445302.2022.2116766
H. H. Pham. Numerical modeling of a mooring line system for an offshore floating wind turbine in Vietnamese sea conditions using nonlinear materials. Water Science and Engineering 17(3):300–308, 2024. https://doi.org/10.1016/j.wse.2023.10.004
D. M. da Cruz, T. L. Popiolek Júnior, M. A. Barreto, et al. Evaluation of energy models for numerical simulation of the mechanical behavior of polyester multifilaments. The Journal of Engineering and Exact Sciences 9(1):15321–01e, 2023. https://doi.org/10.18540/jcecvl9iss1pp15321-01e
H. Liu, W. Huang, Y. Lian, L. Li. An experimental investigation on nonlinear behaviors of synthetic fiber ropes for deepwater moorings under cyclic loading. Applied Ocean Research 45:22–32, 2014. https://doi.org/10.1016/j.apor.2013.12.003
C. Ji, Z. Yuan. Experimental study of a hybrid mooring system. Journal of Marine Science and Technology 20:213–225, 2015. https://doi.org/10.1007/s00773-014-0260-7
J. Koto, C. L. Siow. Experimental study of polyester mooring lines. Journal of Ocean, Mechanical and Aerospace-science and engineering (JOMAse) 50(1):8–13, 2017. https://doi.org/10.36842/jomase.v50i1.162
J. P. Duarte, C. E. M. Guilherme, A. H. M. F. T. da Silva, et al. Lifetime prediction of aramid yarns applied to offshore mooring due to purely hydrolytic degradation. Polymers and Polymer Composites 27(8):518–524, 2019. https://doi.org/10.1177/0967391119851386
S. Xu, K. Rezanejad, J. F. M. Gadelho, et al. Experimental investigation on a dual chamber floating oscillating water column moored by flexible mooring systems. Ocean Engineering 216:108083, 2020. https://doi.org/10.1016/j.oceaneng.2020.108083
E. d. S. Belloni, F. M. Clain, C. E. M. Guilherme. Post-impact mechanical characterization of HMPE yarns. Acta Polytechnica 61(3):406–414, 2021. https://doi.org/10.14311/AP.2021.61.0406
D. M. da Cruz, F. M. Clain, C. E. M. Guilherme. Experimental study of the torsional effect for yarn break load test of polymeric multifilaments. Acta Polytechnica 62(5):538–548, 2022. https://doi.org/10.14311/AP.2022.62.0538
H. Zhang, J. Zeng, S. Tong, et al. Dynamic stiffness of polyester fiber mooring ropes: Experimental investigation based on radial basis function neural networks. Ocean Engineering 280:114833, 2023. https://doi.org/10.1016/j.oceaneng.2023.114833
D. M. da Cruz, A. Penaquioni, L. B. Zangalli, et al. Non-destructive testing of high-tenacity polyester sub-ropes for mooring systems. Applied Ocean Research 134:103513, 2023. https://doi.org/10.1016/j.apor.2023.103513
I. Melito, D. M. da Cruz, E. d. S. Belloni, et al. The effects of mechanical degradation on the quasi static and dynamic stiffness of polyester yarns. Engineering Solid Mechanics 11(3):243–252, 2023. https://doi.org/10.5267/j.esm.2023.4.001
D. M. da Cruz, M. A. Barreto, L. B. Zangalli, et al. Experimental study of creep behavior at high temperature in different HMPE fibers used for offshore mooring. In Offshore Technology Conference Brasil, pp. OTC–32760–MS. Brazil, 2023. https://doi.org/10.4043/32760-MS
B. G. Achhammer, F. W. Reinhart, G. M. Kline. Mechanism of the degradation of polyamides. Journal of Applied Chemistry 1(7):301–320, 1951. https://doi.org/10.1002/jctb.5010010704
S. Ray, R. P. Cooney. Chapter 9 – Thermal degradation of polymer and polymer composites. In Handbook of Environmental Degradation of Materials (Third Edition), pp. 185–206. William Andrew Publishing, 2018. https://doi.org/10.1016/B978-0-323-52472-8.00009-5
A. L. Andrady, P. W. Barnes, J. F. Bornman, et al. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Science of The Total Environment 851(Part 2):158022, 2022. https://doi.org/10.1016/j.scitotenv.2022.158022
G. Hahn, A. H. M. d. F. T. da Silva, F. T. Stumpf, C. E. M. Guilherme. Evaluation of residual strength of polymeric yarns subjected to previous impact loads. Acta Polytechnica 62(4):473–478, 2022. https://doi.org/10.14311/AP.2022.62.0473
Y. Duan, J. Li, W. Zhong, et al. Effects of compaction and UV exposure on performance of acrylate/glass-fiber composites cured layer by layer. Journal of Applied Polymer Science 123(6):3799–3805, 2012. https://doi.org/10.1002/app.34909
T. Lu, E. Solis-Ramos, Y. Yi, M. Kumosa. UV degradation model for polymers and polymer matrix composites. Polymer Degradation and Stability 154:203–210, 2018. https://doi.org/10.1016/j.polymdegradstab.2018.06.004
Y. C. Ching, T. M. S. Udenni Gunathilake, K. Y. Ching, et al. 18 – Effects of high temperature and ultraviolet radiation on polymer composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 407–426. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-08-102290-0.00018-0
F. Hulderman, J. S. Sanghera, J. D. Mackenzie. The effect of UV radiation on the mechanical strength of As2Se3 glass fibers. Journal of Non-Crystalline Solids 127(3):312–322, 1991. https://doi.org/10.1016/0022-3093(91)90484-N
M. M. Shokrieh, A. Bayat. Effects of ultraviolet radiation on mechanical properties of glass/polyester composites. Journal of Composite Materials 41(20):2443–2455, 2007. https://doi.org/10.1177/0021998307075441
S. Lohani, N. Shubham, R. K. Prusty, B. C. Ray. Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites. Materials Today: Proceedings 43(Part 1):524–529, 2021. https://doi.org/10.1016/j.matpr.2020.12.028
T. Agnhage, Y. Zhou, J. Guan, et al. Bioactive and multifunctional textile using plant-based madder dye: Characterization of UV protection ability and antibacterial activity. Fibers and Polymers 18:2170–2175, 2017. https://doi.org/10.1007/s12221-017-7115-x
S. Eyupoglu. Sustainability in the textile and apparel industries: Sourcing natural raw materials, chap. Sustainable plant-based natural fibers, pp. 27–48. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-38541-5_2
E. Karaca, A. S. Hockenberger. Analysis of the fracture morphology of polyamide, polyester, polypropylene, and silk sutures before and after implantation in vivo. Journal of Biomedical Materials Research Part B: Applied Biomaterials 87B(2):580–589, 2008. https://doi.org/10.1002/jbm.b.31136
K. A. El-Farahaty, E. A. Seisa, S. G. El-Sheikh. Influence of wavelength and temperature on the optical and some structural properties of polyester and polyamide surgical suture fibers. Optical Materials 32(9):928–935, 2010. https://doi.org/10.1016/j.optmat.2010.01.027
S. Afewerki, S. V. Harb, T. D. Stocco, et al. Chapter 5 – Polymers for surgical sutures. In Advanced Technologies and Polymer Materials for Surgical Sutures, Woodhead Publishing Series in Biomaterials, pp. 95–128. Woodhead Publishing, 2023. https://doi.org/10.1016/B978-0-12-819750-9.00004-8
M. M. Jafari, S. Jahandari, T. Ozbakkaloglu, et al. Mechanical properties of polyamide fiber-reinforced lime – cement concrete. Sustainability 15(15):11484, 2023. https://doi.org/10.3390/su151511484
H. Jia, Y. Sheng, P. Guo, et al. Effect of synthetic fibers on the mechanical performance of asphalt mixture: A review. Journal of Traffic and Transportation Engineering (English Edition) 10(3):331–348, 2023. https://doi.org/10.1016/j.jtte.2023.02.002
D. A. Martin, M. Obstalecki, P. Kurath, G. P. Horn. An approach for quantifying dynamic properties and simulated deployment loading of fire service escape rope systems. Experimental Techniques 40:367–379, 2016. https://doi.org/10.1007/s40799-016-0041-9
A. Novikova, F. Joseph, D. Cleveland. Rock-climbing apparel: An analysis of current clothing options and future strategies for the design of rock-climbing clothing. International Journal of Fashion Design, Technology and Education 17(2):193–201, 2024. https://doi.org/10.1080/17543266.2023.2261023
H. Tanizaki, K. Takagi, C. Oiwa, et al. Experimental investigation of temperature-dependent hysteresis of fishing-line artificial muscle (twisted and coiled polymer fiber) actuator. In Electroactive Polymer Actuators and Devices (EAPAD) XXI, vol. 10966, pp. 68–74. 2019. https://doi.org/10.1117/12.2513834
Y. An, T. Kajiwara, A. Padermshoke, et al. Environmental degradation of nylon, poly(ethylene terephthalate) (PET), and poly(vinylidene fluoride) (PVDF) fishing line fibers. ACS Applied Polymer Materials 5(6):4427–4436, 2023. https://doi.org/10.1021/acsapm.3c00552
S. D. Weller, L. Johanning, P. Davies, S. J. Banfield. Synthetic mooring ropes for marine renewable energy applications. Renewable Energy 83:1268–1278, 2015. https://doi.org/10.1016/j.renene.2015.03.058
M. B. Bastos, E. B. Fernandes, A. L. N. da Silva. Performance fibers for deep water offshore mooring ropes: Evaluation and analysis. In OCEANS 2016 – Shanghai. China, 2016. https://doi.org/10.1109/OCEANSAP.2016.7485612
V. S. Matveev, G. A. Budnitskii, G. P. Mashinskaya, et al. Structural and mechanical characteristics of aramid fibres for bullet-proof vests. Fibre Chemistry 29(6):381–384, 1997. https://doi.org/10.1007/BF02418874
S. Vignesh, R. Surendran, T. Sekar, B. Rajeswari. Ballistic impact analysis of graphene nanosheets reinforced kevlar-29. Materials Today: Proceedings 45(Part 2):788–793, 2021. https://doi.org/10.1016/j.matpr.2020.02.808
P. G. Riewald. Performance analysis of an aramid mooring line. In Offshore Technology Conference, pp. OTC–5187–MS. Texas, USA, 1986. https://doi.org/10.4043/5187-MS
C. T. Berryman, R. M. Dupin, N. S. Gerrits. Laboratory study of used HMPE MODU mooring lines. In Offshore Technology Conference, pp. OTC–14245–MS. Texas, USA, 2002. https://doi.org/10.4043/14245-MS
S. Leite, J. Boesten. HMPE mooring lines for deepwater MODUs. In Offshore Technology Conference Brasil, pp. OTC–22486–MS. Brazil, 2011. https://doi.org/10.4043/22486-MS
M. Vlasblom, J. Boesten, S. Leite, P. Davies. Development of HMPE fiber for permanent deepwater offshore mooring. In Offshore Technology Conference, pp. OTC–23333–MS. Texas, USA, 2012. https://doi.org/10.4043/23333-MS
H. van der Werff, U. Heisserer. 3 – High-performance ballistic fibers: Ultra-high molecular weight polyethylene (UHMWPE). In Advanced Fibrous Composite Materials for Ballistic Protection, pp. 71–107. Woodhead Publishing, 2016. https://doi.org/10.1016/B978-1-78242-461-1.00003-0
Y. Lian, B. Zhang, J. Ji, et al. Experimental investigation on service safety and reliability of full-scale HMPE fiber slings for offshore lifting operations. Ocean Engineering 285(Part 2):115447, 2023. https://doi.org/10.1016/j.oceaneng.2023.115447
F. Sloan. 5 – Liquid crystal aromatic polyester-arylate (LCP) fibers: Structure, properties, and applications. In Structure and Properties of High-Performance Fibers, Woodhead Publishing Series in Textiles, pp. 113–140. Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-100550-7.00005-X
F. Sloan, S. Bull, R. Longerich. Design modifications to increase fatigue life of fiber ropes. In Proceedings of OCEANS 2005 MTS/IEEE, pp. 829–835. Washington, USA, 2005. https://doi.org/10.1109/OCEANS.2005.1639856
S. Kery. Dynamic modeling of ship-to-ship and ship-to-pier mooring performance. Marine Technology Society Journal 52(5):87–93, 2018. https://doi.org/10.4031/MTSJ.52.5.10
A. Abbas, M. S. Anas, Z. Azam, et al. Analysis of material variation in the design of knitted sportswear compression stockings to escort thermo-physiological comfort using linear regression. The Journal of The Textile Institute 115(1):56–65, 2022. https://doi.org/10.1080/00405000.2022.2157636
A. A. Leal, R. Stämpfli, R. Hufenus. On the analysis of cut resistance in polymer-based climbing ropes: New testing methodology and resulting modes of failure. Polymer Testing 62:254–262, 2017. https://doi.org/10.1016/j.polymertesting.2017.07.004
D. M. da Cruz, A. H. M. F. T. da Silva, F. M. Clain, C. E. M. Guilherme. Experimental study on the behavior of polyamide multifilament subject to impact loads under different soaking conditions. Engineering Solid Mechanics 11(1):23–34, 2022. https://doi.org/10.5267/j.esm.2022.11.001
Y. Chevillotte, Y. Marco, G. Bles, et al. Fatigue of improved polyamide mooring ropes for floating wind turbines. Ocean Engineering 199:107011, 2020. https://doi.org/10.1016/j.oceaneng.2020.107011
S. A. Hosseini Ravandi, M. Valizadeh. 2 – Properties of fibers and fabrics that contribute to human comfort. In Improving Comfort in Clothing, pp. 61–78. Woodhead Publishing, 2011. https://doi.org/10.1533/9780857090645.1.61
American Society for Testing and Materials. Standard practice for operating xenon arc lamp apparatus for exposure of materials. ASTM G155-21, 2021. https://doi.org/10.1520/G0155-21
American Society for Testing and Materials. Standard practice for fluorescent ultraviolet (UV) lamp apparatus exposure of plastics. ASTM D4329-21, 2021. https://doi.org/10.1520/D4329-21
International Organization for Standardization. Plastics – methods of exposure to laboratory light sources. ISO 4892-1:2024, 2024.
American Society for Testing and Materials. Standard test method for breaking force and elongation of textile fabrics (strip method). ASTM D5035-11(2019), 2019. https://doi.org/10.1520/D5035-11R19
Q-Lab Corporation. Technical bulletin LU-8160, 2016.
American Society for Testing and Materials. Standard test methods for linear density of textile fibers. ASTM D1577-07(2018), 2018. https://doi.org/10.1520/D1577-07R18
International Organization for Standardization. Textiles – standard atmospheres for conditioning and testing. ISO 139:2005, 2005.
International Organization for Standardization. Textiles – yarns from packages – determination of singleend breaking force and elongation at break using constant rate of extension (CRE) tester. ISO 2062:2009, 2009.
G. Ávila. Introdução à análise matemática [In Portuguese; Introduction to mathematical analysis]. Editora Edgar Blucher, Brasil, 1999.
R. M. L. R. F. Brasil, J. M. Balthazar, W. Góis. Métodos numéricos e computacionais na prática de engenharias e ciências [In Portuguese; Numerical and computational methods in engineering and science practice]. Editora Edgar Blucher, Brasil, 2015.
D. M. da Cruz, I. Melito, A. J. da Cruz Júnior, et al. Desenvolvimento de código aberto em Octave para ajustes de funções através de linearização e MMQ [In Portuguese; Open source development in Octave for function adjustments through linearization and OLS]. E&S Engineering and Science 13(1):1–14, 2024. https://doi.org/10.18607/ES20241316896
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Daniel Magalhães da Cruz, Felipe Tempel Stumpf, Jakson Manfredini Vassoler, Carlos Eduardo Marcos Guilherme
This work is licensed under a Creative Commons Attribution 4.0 International License.