Experimental and statistical analysis of soil stabilization to avoid landfilling

Authors

  • Imed Benrebouh University Ferhat Abbas Setif 1, Department of Civil Engineering, Emergent Materials Research Unit, Setif, Algeria
  • Abdellah Douadi University Ferhat Abbas Setif 1, Department of Civil Engineering, Emergent Materials Research Unit, Setif, Algeria
  • Ilyas Hafhouf University Ferhat Abbas Setif 1, Department of Civil Engineering, Emergent Materials Research Unit, Setif, Algeria
  • Abdelghani Merdas University Ferhat Abbas Setif 1, Department of Civil Engineering, Emergent Materials Research Unit, Setif, Algeria
  • Abderrahim Meguellati University Ferhat Abbas Setif 1, Department of Civil Engineering, Emergent Materials Research Unit, Setif, Algeria
  • Giulia Del Serrone Sapienza University of Rome, Construction and Environmental Engineering, Department of Civil, Italy
  • Laura Moretti Sapienza University of Rome, Construction and Environmental Engineering, Department of Civil, Italy

DOI:

https://doi.org/10.14311/AP.2025.65.0143

Keywords:

soil stabilisation, clays, lime, curing, compressive strength

Abstract

Clayey soil is a moisture-sensitive material whose properties pose geo-environmental challenges in the construction sector. Soil stabilization through lime treatment offers advantages using local unsuitable soils without landfilling. This study investigates lime treatment and stabilization of sensitive reddish clay soil from the Setif region, Algeria. Geotechnical, chemical, and physic-chemical characterizations of the clayey soil with different percentages of dry lime (i.e., 0% to 9% by weight with intervals of 3%) were conducted. The standard plasticity test shows that the lime treatment causes a decrease in the plasticity index (from 30.7 to 22.1%) and methylene blue value (from 5% to 2.71%). Furthermore, the compressive strength test revealed a 16-fold increase in unconfined compressive strength (UCS) after 28 days with 6% lime (130 kPa vs 2100 kPa). However, a decrease in dry density was also observed (16 kN/m3 vs 15.7 kN/m3). Chemical and physic-chemical analyses using X-ray fluorescence and diffraction revealed the appearance of other chemical elements and mineral phases. Finally, ANalysis Of VAriance (ANOVA) was used to evaluate the effect of curing time and lime content on UCS. Both variables affected the strength development positively. The lime content, on the other hand, was two times more efficient than the curing time.

Downloads

Download data is not yet available.

References

A. Mahamedi, M. Khemissa. Etude de l’evolutivite d’une argile expansive traitee aux liants hydrauliques [In French; Study of the evolution of an expansive clay treated with hydraulic binders]. In 3ème Conférence Maghrébine en Ingénierie Géotechnique (3ème CMIG’13), pp. 26–37. 2013.

T. Thyagaraj, S. Zodinsanga. Swell-shrink behaviour of lime precipitation treated soil. Proceedings of the Institution of Civil Engineers – Ground Improvement 167(4):260–273, 2014. https://doi.org/10.1680/grim.12.00028

C. C. Ikeagwuani, D. C. Nwonu. Emerging trends in expansive soil stabilisation: A review. Journal of Rock Mechanics and Geotechnical Engineering 11(2):423–440, 2019. https://doi.org/10.1016/j.jrmge.2018.08.013

A. A. Sabtan. Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia. Journal of Asian Earth Sciences 25(5):747–757, 2005. https://doi.org/10.1016/j.jseaes.2004.07.003

R. Li, R. Yan, J. Liu, S. Shao. A new practicable approach to the stability analysis of unsaturated expansive soil slope. Disaster Advances 6:33–43, 2013.

A. Gomes Correia, M. G. Winter, A. J. Puppala. A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics 7:21–28, 2016. https://doi.org/10.1016/j.trgeo.2016.03.003

F. G. Bell. Lime stabilization of clay minerals and soils. Engineering Geology 42(4):223–237, 1996. https://doi.org/10.1016/0013-7952(96)00028-2

P. G. Nicholson. Soil improvement and ground modification methods, chap. Ground improvement techniques and applications, pp. 9–17. Butterworth-Heinemann, USA, 2015. ISBN 9780124080768.

F. G. Bell, M. G. Culshaw, I. Jefferson, et al. Problems soils: A review from a British perspective. In Problematic Soils, pp. 1–35. 2015.

A. A. Firoozi, C. Guney Olgun, A. A. Firoozi, M. S. Baghini. Fundamentals of soil stabilization. International Journal of Geo-Engineering 8(1):26, 2017. https://doi.org/10.1186/s40703-017-0064-9

T. Falayi, F. N. Okonta, F. Ntuli. The geotechnical and microstructural properties of desilicated fly ash lime stabilised expansive soil. Materials and Structures 49(11):4881–4891, 2016. https://doi.org/10.1617/s11527-016-0831-7

T. Chompoorat, T. Maikhun, S. Likitlersuang. Cement-improved lake bed sedimentary soil for road construction. Proceedings of the Institution of Civil Engineers – Ground Improvement 172(3):192–201, 2019. https://doi.org/10.1680/jgrim.18.00076

S. Sellami, O. Zeghouan, M. Lassaad, et al. Determination of lead concentrations in the soils of Setif City, Eastern Algeria. Arabian Journal of Geosciences 13(18):929, 2020. https://doi.org/10.1007/s12517-020-05977-5

A. Behnood. Soil and clay stabilization with calciumand non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics 17:14–32, 2018. https://doi.org/10.1016/j.trgeo.2018.08.002

A. Anburuvel. The engineering behind soil stabilization with additives: A state-of-the-art review. Geotechnical and Geological Engineering 42(1):1–42, 2024. https://doi.org/10.1007/s10706-023-02554-x

M. Hussain, S. K. Dash. Influence of lime on plasticity behaviour of soils. In Indian geotechnical conference – GEOtrendz, pp. 537–540. 2010.

M. Aziz, F. N. Sheikh, M. U. Qureshi, et al. Experimental study on endurance performance of lime and cement-treated cohesive soil. KSCE Journal of Civil Engineering 25(9):3306–3318, 2021. https://doi.org/10.1007/s12205-021-2154-7

S. Bhattacharja, J. Bhatty. Comparative performance of portland cement and lime stabilization of moderate to high plasticity clay soils. Tech. rep., Portland Cement Association, 2003.

M. A. Sakr, M. A. Shahin, Y. M. Metwally. Utilization of lime for stabilizing soft clay soil of high organic content. Geotechnical and Geological Engineering 27(1):105–113, 2009. https://doi.org/10.1007/s10706-008-9215-2

M. Khemissa, A. Mahamedi. Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science 95:104–110, 2014. https://doi.org/10.1016/j.clay.2014.03.017

R. B. Kogbara, A. Al-Tabbaa. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Science of The Total Environment 409(11):2325–2335, 2011. https://doi.org/10.1016/j.scitotenv.2011.02.037

F. Bouras, M. Al-Mukhtar, N. Tapsoba, et al. Geotechnical behavior and physico-chemical changes of lime-treated and cement-treated silty soil. Geotechnical and Geological Engineering 40(4):2033–2049, 2022. https://doi.org/10.1007/s10706-021-02008-2

L. Moretti, S. Natali, A. Tiberi, A. D’Andrea. Proposal for a methodology based on XRD and SEM-EDS to monitor effects of lime-treatment on clayey soils. Applied Sciences 10(7):2569, 2020. https://doi.org/10.3390/app10072569

Y. Wang, M. Duc, Y.-J. Cui, et al. Aggregate size effect on the development of cementitious compounds in a lime-treated soil during curing. Applied Clay Science 136:58–66, 2017. https://doi.org/10.1016/j.clay.2016.11.003

K. Harichane, M. Ghrici, S. Kenai. Effect of the combination of lime and natural pozzolana on the compaction and strength of soft clayey soils: A preliminary study. Environmental Earth Sciences 66(8):2197–2205, 2012. https://doi.org/10.1007/s12665-011-1441-x

S. A. Abdulkader Khattab. Etude multi-échelles d’un sol argileux plastique traité à la chaux [In French; Multi-scale study of a plastic clay soil treated with lime]. Ph.D. thesis, Genie civil, Orléans, France, 2002.

N. Maubec. Approche multi-echelle du traitement des sols à la chaux – etudes des interactions avec les argiles [In French; Multi-scale approach to lime soil treatment – studies of interactions with clays]. Ph.D. thesis, Université de Nantes, France, 2010.

C. A. Ríos, C. D. Williams, M. A. Fullen. Hydrothermal synthesis of hydrogarnet and tobermorite at 175 °C from kaolinite and metakaolinite in the CaO-Al2O3-SiO2-H2O system: A comparative study. Applied Clay Science 43(2):228–237, 2009. https://doi.org/10.1016/j.clay.2008.09.014

G. Russo, G. Modoni. Fabric changes induced by lime addition on a compacted alluvial soil. Géotechnique Letters 3(2):93–97, 2013. https://doi.org/10.1680/geolett.13.026

Z. Ying, Y.-J. Cui, N. Benahmed, M. Duc. Changes in microstructure and water retention property of a lime-treated saline soil during curing. Acta Geotechnica 17(1):319–326, 2022. https://doi.org/10.1007/s11440-021-01218-5

L. Moretti, M. Conficconi, S. Natali, A. D’Andrea. Statistical analyses of SEM-EDS results to predict the quantity of added quicklime in a treated clayey soil. Construction and Building Materials 253:118852, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118852

M. Al-Mukhtar, A. Lasledj, J.-F. Alcover. Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Applied Clay Science 50(2):191–198, 2010. https://doi.org/10.1016/j.clay.2010.07.023

M. Amiri, M. Sanjari, F. Porhonar. Microstructural evaluation of the cement stabilization of hematite-rich red soil. Case Studies in Construction Materials 16:e00935, 2022. https://doi.org/10.1016/j.cscm.2022.e00935

D. Samir. Geological and geotechnical characteristics of the soils in the region of Sétif. European Scientific Journal, ESJ 9(21):484–490, 2013.

J. D. Pilger, Ênio Leandro Machado, A. de Assis Lawisch-Rodriguez, et al. Environmental impacts and cost overrun derived from adjustments of a road construction project setting. Journal of Cleaner Production 256:120731, 2020. https://doi.org/10.1016/j.jclepro.2020.120731

I. Zabalza Bribián, A. Valero Capilla, A. Aranda Usón. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment 46(5):1133–1140, 2011. https://doi.org/10.1016/j.buildenv.2010.12.002

V. Steinbach, F.-W.Wellmer. Consumption and use of non-renewable mineral and energy raw materials from an economic geology point of view. Sustainability 2(5):1408–1430, 2010. https://doi.org/10.3390/su2051408

M. Aamir, Z. Mahmood, A. Nisar, et al. Performance evaluation of sustainable soil stabilization process using waste materials. Processes 7(6):378, 2019. https://doi.org/10.3390/pr7060378

Association Francaise de Normalisation. NFP 11 300. Earthworks classification of materials for use in the construction of embankments and capping layers of road infrastructures, 1992.

SETRA-LCPC. D9924. Traitement des sols à la chaux et/ou aux liants hydrauliques: Application à la réalisation des remblais et des couches de forme [In French; Soil treatment with lime and/or hydraulic binders: Application to the creation of embankments and subgrades], 2000.

Association Francaise de Normalisation. NF P94-093. Soils: Investigation and testing-determination of the compaction reference values of a soil type-standard proctor test-modified proctor test, 2015.

European Committee for Standardization. EN ISO 17892-12. Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits, 2018.

Association Francaise de Normalisation. NF P94-068. Soils: Investigation and testing. Measuring of the methylene blue adsorption capacity of à rocky soil. determination of the methylene blue of à soil by means of the stain test, 1998.

Association Francaise de Normalisation. NF P94-056. Soils: Investigation and testing. Granulometric analysis. Dry sieving method after washing, 1996.

Association Francaise de Normalisation. NF P94-057. Soils: Investigation and testing. Granulometric analysis. Hydrometer method, 1992.

I. Hafhouf, O. Bahloul, K. Abbeche. Effects of drying-wetting cycles on the salinity and the mechanical behavior of sebkha soils. A case study from Ain M’Lila, Algeria. CATENA 212:106099, 2022. https://doi.org/10.1016/j.catena.2022.106099

A. B. Laibi, M. Gomina, B. Sorgho, et al. Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction [In French; Physicochemical and geotechnical characterization of two clay sites in Benin with a view to their development in eco-construction]. International Journal of Biological and Chemical Sciences 11(1):499–514, 2017. https://doi.org/10.4314/ijbcs.v11i1.40

Association Francaise de Normalisation. NF EN ISO 17892-7. Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test, 2018.

European Committee Standarisation. EN 13286-50. Unbound and hydraulically bound mixtures – Part 50: Method for the manufacture of test specimens of hydraulically bound mixtures using proctor equipment or vibrating table compaction, 2005.

R. G. Brereton. Introduction to analysis of variance. Journal of Chemometrics 33(1):e3018, 2019. https://doi.org/10.1002/cem.3018

M. J. de Smith. Statistical analysis handbook: A comprehensive handbook of statistical concepts, techniques and software tools. The Winchelsea Press, Edinburgh, UK, 2018.

L. K. Sharma, N. N. Sirdesai, K. M. Sharma, T. N. Singh. Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science 152:183–195, 2018. https://doi.org/10.1016/j.clay.2017.11.012

G. Stoltz, O. Cuisinier, F. Masrouri. Multi-scale analysis of the swelling and shrinkage of a lime-treated expansive clayey soil. Applied Clay Science 61:44–51, 2012. https://doi.org/10.1016/j.clay.2012.04.001

P. T. Sherwood. Soil stabilization with cement and lime. TRL state-of-the-art review. HMSO, London, 1993.

B. M. Das. Advanced soil mechanics. CRC Press, Boca Raton, Florida, USA, 5th edn., 2019.

A. A. E. Driss, K. Harichane, M. Ghrici. Effet de la chaux sur la stabilisation des propriétés géotechniques d’un sol argileux [In France; Effect of lime stabilization on geotechnical properties of clay soil]. In 8ème Symposium international sur la construction en zone sismique, pp. 1–10. 2018. https://doi.org/10.5281/zenodo.3635881

E. Garzón, M. Cano, B. C. O‘Kelly, P. J. Sánchez-Soto. Effect of lime on stabilization of phyllite clays. Applied Clay Science 123:329–334, 2016. https://doi.org/10.1016/j.clay.2016.01.042

E. Vitale, D. Deneele, M. Paris, G. Russo. Multiscale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science 141:36–45, 2017. https://doi.org/10.1016/j.clay.2017.02.013

A. K. Jha, P. V. Sivapullaiah. Mechanism of improvement in the strength and volume change behavior of lime stabilized soil. Engineering Geology 198:53–64, 2015. https://doi.org/10.1016/j.enggeo.2015.08.020

M. Ismeik, F. Shaqour. Effectiveness of lime in stabilising subgrade soils subjected to freeze – thaw cycles. Road Materials and Pavement Design 21(1):42–60, 2020. https://doi.org/10.1080/14680629.2018.1479289

R. N. Yong, V. R. Ouhadi. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Applied Clay Science 35(3):238–249, 2007. https://doi.org/10.1016/j.clay.2006.08.009

D. Ciancio, C. T. S. Beckett, J. A. H. Carraro. Optimum lime content identification for lime-stabilised rammed earth. Construction and Building Materials 53:59–65, 2014. https://doi.org/10.1016/j.conbuildmat.2013.11.077

Z. Ying, Y.-j. Cui, N. Benahmed, M. Duc. Changes in mineralogy and microstructure of a lime-treated silty soil during curing time. E3S Web of Conferences 195:03044, 2020. https://doi.org/10.1051/e3sconf/202019503044

S. Pourakbar, A. Maneshmoaveni, D. Moazami, et al. Stabilization of clay soil using alkali-activated sewage sludge. Journal of Rock Mechanics and Geotechnical Engineering 2024. [In Press]. https://doi.org/10.1016/j.jrmge.2024.09.029

S. D. Samson, C. M. Eggleston. The depletion and regeneration of dissolution-active sites at the mineral-water interface: II. regeneration of active sites on α-Fe2O3 at pH 3 and pH 6. Geochimica et Cosmochimica Acta 64(21):3675–3683, 2000. https://doi.org/10.1016/S0016-7037(00)00461-0

S. D. Samson, L. L. Stillings, C. M. Eggleston. The depletion and regeneration of dissolution-active sites at the mineral-water interface: I. Fe, Al, and In sesquioxides. Geochimica et Cosmochimica Acta 64(20):3471–3484, 2000. https://doi.org/10.1016/S0016-7037(00)00462-2

E. Emmanuel, L. L. Yong, A. Asadi, V. Anggraini. Full-factorial two-level design in optimizing the contents of olivine and coir fiber for improving the strength property of a soft marine clay. Journal of Natural Fibers 19(2):546–561, 2022. https://doi.org/10.1080/15440478.2020.1751373

R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook. Response surface methodology: Process and product optimization using designed experiments. John Wiley & Sons, New York, USA, 3rd edn., 2016. ISBN 9781118916018.

S. Yi, Y. Su, B. Qi, et al. Application of response surface methodology and central composite rotatable design in optimizing the preparation conditions of vinyltriethoxysilane modified silicalite/polydimethylsiloxane hybrid pervaporation membranes. Separation and Purification Technology 71(2):252–262, 2010. https://doi.org/10.1016/j.seppur.2009.12.005

Downloads

Published

2025-05-07

Issue

Section

Articles

How to Cite

Benrebouh, I., Douadi, A., Hafhouf, I., Merdas, A., Meguellati, A., Del Serrone, G., & Moretti, L. (2025). Experimental and statistical analysis of soil stabilization to avoid landfilling. Acta Polytechnica, 65(2), 143–154. https://doi.org/10.14311/AP.2025.65.0143