Gamma-ray bursts and optical brightness: insights from Swift satellite
DOI:
https://doi.org/10.14311/AP.2025.65.0101Keywords:
data analysis, gamma-ray burstsAbstract
During the examination of optical properties of gamma-ray bursts (GRBs) measured during the life of the Neil Gehrels Swift Observatory satellite, significant discoveries were made. While the satellite measures gamma, X-ray, and optical data simultaneously, in many cases, only an upper limit is established in the optical domain. Hence, survival analysis, a.k.a. dependability modelling, was necessary, serving as a tool for studying samples where some cases are bound only by the upper limit, as mentioned earlier. This method is used to analyse datasets that may have upper or lower bounds rather than precise observations, but nevertheless contain relevant information. It was previously established that the duration, gamma fluence, and peak flux all have a substantial effect on the optical brightness distribution, probably due to the energy of the beam from the GRB’s central engine. However, after analysing more than 200 data points, we no longer see this association. This disagreement shows that the previously reported impact may not be as significant as previously derived, needing more research to better understand the underlying processes that determine the optical brightness in connection to gamma-ray properties.
Downloads
References
P. Mészáros. Gamma-ray bursts. Reports on Progress in Physics 69(8):2259, 2006. https://doi.org/10.1088/0034-4885/69/8/R01
P. Kumar, B. Zhang. The physics of gamma-ray bursts & relativistic jets. Physics Reports 561:1–109, 2015. https://doi.org/10.1016/j.physrep.2014.09.008
W. A. Wheaton, M. P. Ulmer, W. A. Baity, et al. The direction and spectral variability of a cosmic gamma-ray burst. The Astrophysical Journal 185:L57, 1973. https://doi.org/10.1086/181320
D. Eichler, M. Livio, T. Piran, D. N. Schramm. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340(6229):126–128, 1989. https://doi.org/10.1038/340126a0
A. I. MacFadyen, S. E. Woosley. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. The Astrophysical Journal 524(1):262, 1999. https://doi.org/10.1086/307790
B. Zhang, P. Mészáros. An analysis of gamma-ray burst spectral break models. The Astrophysical Journal 581(2):1236, 2002. https://doi.org/10.1086/344338
B. P. Abbott, R. Abbott, T. D. Abbott, et al. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Physical Review Letters 119(14):141101, 2017. https://doi.org/10.1103/PhysRevLett.119.141101
A. Goldstein, P. Veres, E. Burns, et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. The Astrophysical Journal Letters 848(2):L14, 2017. https://doi.org/10.3847/2041-8213/aa8f41
Z. Bagoly, D. Szécsi, L. G. Balázs, et al. Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astronomy & Astrophysics 593:L10, 2016. https://doi.org/10.1051/0004-6361/201628569
Z. Bagoly, D. Szécsi, L. G. Balázs, et al. Fermi GBM transient searches with ADWO. Contributions of the Astronomical Observatory Skalnaté Pleso 47(2):76–83, 2017.
I. Horváth, B. G. Tóth, J. Hakkila, et al. Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane. Astrophysics and Space Science 363(3):53, 2018. https://doi.org/10.1007/s10509-018-3274-5
I. Horváth. A third class of gamma-ray bursts? The Astrophysical Journal 508(2):757, 1998. https://doi.org/10.1086/306416
I. Horváth, A. Mészáros, L. G. Balázs, Z. Bagoly. Where is the 3rd subgroup of gamma-ray bursts? Baltic Astronomy 13:217, 2004. https://doi.org/10.48550/arXiv.astro-ph/0507688
I. Horváth, L. G. Balázs, Z. Bagoly, et al. A new definition of the intermediate group of gamma-ray bursts. Astronomy & Astrophysics 447(1):23–30, 2006. https://doi.org/10.1051/0004-6361:20041129
J. Kóbori, Z. Bagoly, L. G. Balázs. Kilonova rates from spherical and axisymmetrical models. Monthly Notices of the Royal Astronomical Society 494(3):4343–4348, 2020. https://doi.org/10.1093/mnras/staa1034
I. Horváth, Z. Bagoly, L. G. Balázs, et al. Detailed classification of Swift’s gamma-ray bursts. The Astrophysical Journal 713(1):552, 2010. https://doi.org/10.1088/0004-637X/713/1/552
P. Veres, Z. Bagoly, I. Horváth, et al. A distinct peak-flux distribution of the third class of gamma-ray bursts: A possible signature of X-ray flashes? The Astrophysical Journal 725(2):1955, 2010. https://doi.org/10.1088/0004-637X/725/2/1955
S. Pinter, Z. Bagoly, L. G. Balázs, et al. Resolving the structure of the galactic foreground using Herschel measurements and the Kriging technique. Proceedings of the International Astronomical Union 12(S333):168–169, 2017. https://doi.org/10.1017/S1743921317011097
X. Bi, J. Mao, C. Liu, J.-M. Bai. Statistical study of the Swift X-ray flash and X-ray rich gamma-ray bursts. The Astrophysical Journal 866(2):97, 2018. https://doi.org/10.3847/1538-4357/aadcf8
B. Zhang. The physics of gamma-ray bursts. Cambridge University Press, 2018. https://doi.org/10.1017/9781139226530
L. G. Balazs, A. Meszaros, I. Horváth. Anisotropy of the sky distribution of gamma-ray bursts. Astronomy & Astrophysics 339:1, 1998. https://doi.org/10.48550/arXiv.astro-ph/9807006
A. Mészáros, Z. Bagoly, I. Horváth, et al. A remarkable angular distribution of the intermediate subclass of gamma-ray bursts. The Astrophysical Journal 539(1):98, 2000. https://doi.org/10.1086/309193
A. Mészáros, Z. Bagoly, R. Vavrek. On the existence of the intrinsic anisotropies in the angular distributions of gamma-ray bursts. Astronomy & Astrophysics 354:1–6, 2000. https://doi.org/10.48550/arXiv.astro-ph/9912037
A. Mészáros, L. G. Balázs, Z. Bagoly, P. Veres. Impact on cosmology of the celestial anisotropy of the short gamma-ray bursts. Baltic Astronomy 18:293–296, 2009. https://doi.org/10.48550/arXiv.1005.1558
Z. Bagoly, L. Borgonovo, A. Mészáros, et al. Factor analysis of the long gamma-ray bursts. Astronomy & Astrophysics 493(1):51–54, 2009. https://doi.org/10.1051/0004-6361:20078635
L. G. Balázs, A. Mészáros, I. Horváth, R. Vavrek. An intrinsic anisotropy in the angular distribution of gamma-ray bursts. Astronomy and Astrophysics Supplement Series 138(3):417–418, 1999. https://doi.org/10.1051/aas:1999290
R. Vavrek, L. G. Balázs, A. Mészáros, et al. Testing the randomness in the sky-distribution of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 391(4):1741–1748, 2008. https://doi.org/10.1111/j.1365-2966.2008.13635.x
D. Pérez-Ramírez, A. de Ugarte Postigo, J. Gorosabel, et al. Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms. Astronomy & Astrophysics 510:A105, 2010. https://doi.org/10.1051/0004-6361/200811151
J. Hakkila, I. Horváth, E. Hofesmann, S. Lesage. Properties of short gamma-ray burst pulses from a BATSE TTE GRB pulse catalog. The Astrophysical Journal 855(2):101, 2018. https://doi.org/10.3847/1538-4357/aaac2b
I. Horváth, J. Hakkila, Z. Bagoly, et al. Multidimensional analysis of Fermi GBM gamma-ray bursts. Astrophysics and Space Science 364(6):105, 2019. https://doi.org/10.1007/s10509-019-3585-1
B. G. Tóth, I. I. Rácz, I. Horváth. Gaussian-mixture-model-based cluster analysis of gamma-ray bursts in the BATSE catalog. Monthly Notices of the Royal Astronomical Society 486(4):4823–4828, 2019. https://doi.org/10.1093/mnras/stz1188
I. Horváth, D. Szécsi, J. Hakkila, et al. The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2):2544–2553, 2020. https://doi.org/10.1093/mnras/staa2460
I. Horváth, I. I. Racz, Z. Bagoly, et al. Does the GRB duration depend on redshift? Universe 8(4):221, 2022. https://doi.org/10.3390/universe8040221
L. G. Balázs, Z. Bagoly, J. E. Hakkila, et al. A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(3):2236–2246, 2015. https://doi.org/10.1093/mnras/stv1421
L. G. Balázs, L. Rejtö, G. Tusnády. Some statistical remarks on the giant GRB ring. Monthly Notices of the Royal Astronomical Society 473(3):3169–3179, 2018. https://doi.org/10.1093/mnras/stx2550
I. Horváth, J. Hakkila, Z. Bagoly. Possible structure in the GRB sky distribution at redshift two. Astronomy & Astrophysics 561:L12, 2014. https://doi.org/10.1051/0004-6361/201323020
I. Horváth, Z. Bagoly, J. Hakkila, L. V. Tóth. New data support the existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics 584:A48, 2015. https://doi.org/10.1051/0004-6361/201424829
G. Paál, I. Horváth, B. Lukács. Inflation and compactification from Galaxy redshifts? Astrophysics and Space Science 191(1):107–124, 1992. https://doi.org/10.1007/BF00644200
N. R. Tanvir, D. B. Fox, A. J. Levan, et al. A γ-ray burst at a redshift of z ≈ 8.2. Nature 461(7268):1254–1257, 2009. https://doi.org/10.1038/nature08459
Z. Bagoly, L. G. Balázs, G. Galgóczi, et al. Transient detection capabilities of small satellite gamma-ray detectors. Astronomische Nachrichten 340(7):681–689, 2019. https://doi.org/10.1002/asna.201913675
R. Salvaterra, M. Della Valle, S. Campana, et al. GRB 090423 at a redshift of z ≈ 8.1. Nature 461(7268):1258–1260, 2009. https://doi.org/10.1038/nature08445
N. R. Tanvir, E. Le Floc’h, L. Christensen, et al. Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy 52(3):219–244, 2021. https://doi.org/10.1007/s10686-021-09778-w
D. Zhao, B. Cordier, P. Sizun, et al. Influence of the Earth on the background and the sensitivity of the GRM and ECLAIRs instruments aboard the Chinese-French mission SVOM. Experimental Astronomy 34(3):705–728, 2012. https://doi.org/10.1007/s10686-012-9313-2
L. Amati, P. O’Brien, D. Götz, et al. The THESEUS space mission concept: Science case, design and expected performances. Advances in Space Research 62(1):191–244, 2018. https://doi.org/10.1016/j.asr.2018.03.010
H. Dénes, P. A. Jones, L. V. Tóth, et al. Exploring the pattern of the Galactic H I foreground of GRBs with the ATCA. Monthly Notices of the Royal Astronomical Society 489(3):3778–3796, 2019. https://doi.org/10.1093/mnras/stz2314
L. V. Toth, Y. Doi, S. Zahorecz, et al. Galactic foreground of gamma-ray bursts from AKARI far-infrared surveyor. Publications of the Astronomical Society of Japan 71(1):10, 2019. https://doi.org/10.1093/pasj/psy123
M. Stickel, S. Bogun, D. Lemke, et al. The ISOPHOT far-infrared serendipity north ecliptic pole minisurvey. Astronomy & Astrophysics 336:116–122, 1998.
P. Héraudeau, S. Oliver, C. del Burgo, et al. The European large area ISO survey – VIII. 90-μm final analysis and source counts. Monthly Notices of the Royal Astronomical Society 354(3):924–934, 2004. https://doi.org/10.1111/j.1365-2966.2004.08259.x
P. Madau, M. Dickinson. Cosmic star-formation history. Annual Review of Astronomy and Astrophysics 52:415–486, 2014. https://doi.org/10.1146/annurev-astro-081811-125615
S. D. Barthelmy, L. M. Barbier, J. R. Cummings, et al. The Burst Alert Telescope (BAT) on the Swift MIDEX mission. Space Science Reviews 120(3):143–164, 2005. https://doi.org/10.1007/s11214-005-5096-3
D. N. Burrows, J. E. Hill, J. A. Nousek, et al. The Swift X-ray telescope. Space Science Reviews 120(3):165–195, 2005. https://doi.org/10.1007/s11214-005-5097-2
P. W. A. Roming, T. E. Kennedy, K. O. Mason, et al. The Swift ultra-violet/optical telescope. Space Science Reviews 120(3):95–142, 2005. https://doi.org/10.1007/s11214-005-5095-4
NASA, Goddard Space Flight Center. Swift GRBs, 2024. [2024-04-01]. https://swift.gsfc.nasa.gov/archive/grb_table/
I. Hacking. The emergence of probability. Cambridge University Press, UK, 2nd edn., 2013.
I. Rácz, L. G. Balazs, Z. Bagoly, L. V. Toth. Survival analysis of the optical brightness GRB host galaxies. In Proceedings of Swift: 10 Years of Discovery – Proceedings of Science (SWIFT 10), vol. 233, p. 99. 2015. https://doi.org/10.22323/1.233.0099
E. D. Feigelson, P. I. Nelson. Statistical methods for astronomical data with upper limits. I. Univariate distributions. The Astrophysical Journal 293:192–206, 1985. https://doi.org/10.1086/163225
T. Isobe, E. D. Feigelson, P. I. Nelson. Statistical methods for astronomical data with upper limits. II. Correlation and regression. The Astrophysical Journal 306:490, 1986. https://doi.org/10.1086/164359
E. D. Feigelson, G. J. Babu. Modern Statistical Methods for Astronomy. Cambridge University Press, 2012. https://doi.org/10.1017/CBO9781139015653
P. K. Andersen, N. Keiding. Encyclopedia of Biostatistics, chap. Survival Analysis, Overview, pp. 5368–5377. John Wiley & Sons, Ltd, Chichester, UK, 2005. https://doi.org/10.1002/0470011815.b2a11072
T. M. Therneau, P. M. Grambsch. Modeling survival data: Extending the Cox model. Springer New York, USA, 2000. https://doi.org/10.1007/978-1-4757-3294-8
D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34(2):187–202, 1972. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
T. M. Therneau. A Package for Survival Analysis in R, 2024. [2024-04-01]. https://CRAN.R-project.org/package=survival
M. Karson. Handbook of methods of applied statistics. Volume I: Techniques of computation descriptive methods, and statistical inference. Volume II: Planning of surveys and experiments. Journal of the American Statistical Association 63(323):1047–1049, 1968. https://doi.org/10.1080/01621459.1968.11009335
D. Gruber, A. Goldstein, V. Weller von Ahlefeld, et al. The Fermi GBM gamma-ray burst spectral catalog: Four years of data. The Astrophysical Journal Supplement Series 211(1):12, 2014. https://doi.org/10.1088/0067-0049/211/1/12
I. I. Rácz, L. G. Balázs, I. Horváth, et al. Statistical properties of Fermi GBM GRBs’ spectra. Monthly Notices of the Royal Astronomical Society 475(1):306–320, 2018. https://doi.org/10.1093/mnras/stx3152
Downloads
Published
License
Copyright (c) 2025 Istvan I. Racz, Yasmin Nehme, Lajos G. Balazs

This work is licensed under a Creative Commons Attribution 4.0 International License.


