Correlation between X-ray and gamma data of Swift measurements

Authors

  • Istvan I. Racz University of Public Service, Department of Natural Sciences, 2 Ludovika tér, H-1083 Budapest, Hungary https://orcid.org/0000-0002-4595-6933
  • Lajos G. Balazs HUN-REN Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós Astronomical Institute, Konkoly-Thege Miklós út 15-17, H-1121 Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Institute of Physics and Astronomy, Department of Astronomy, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
  • Istvan Horvath University of Public Service, Department of Natural Sciences, 2 Ludovika tér, H-1083 Budapest, Hungary
  • Sandor Pinter University of Public Service, Department of Natural Sciences, 2 Ludovika tér, H-1083 Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Institute of Physics and Astronomy, Department of Astronomy, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary https://orcid.org/0000-0002-5755-7956

DOI:

https://doi.org/10.14311/AP.2025.65.0092

Keywords:

gamma-ray burst, spectroscopic, statistical, catalogs

Abstract

Several studies over the last two decades have used canonical correlation analysis (CCA) to study the relationships between main γ-ray (e.g. fluence, peak flux, and duration) and main X-ray (flux, decay and spectral index, and hydrogen column density) data from gamma-ray bursts (GRBs). In this paper, we revisit this approach using a much larger dataset to identify potential new insights into these relationships. We used CCA to investigate the interrelationship of the aforementioned gamma-ray and X-ray parameters. Using the derived canonical variables, we calculated their correlations (canonical loadings) with the original data. Consistently with previous research, the analysis revealed that gamma-ray fluence and X-ray flux have the strongest correlation, while the X-ray decay index and spectral index have a lower contribution. Interestingly, our analysis of a much larger dataset reveals that the HI column density makes a significant contribution to the overall correlation. This finding, in the context of the collapsar model for long GRBs, could be interpreted as an indication that the progenitor star ejected an HI envelope during the GRB.

Downloads

Download data is not yet available.

References

P. Mészáros. Gamma-ray bursts. Reports on Progress in Physics 69(8):2259–2321, 2006. https://doi.org/10.1088/0034-4885/69/8/R01

P. Kumar, B. Zhang. The physics of gamma-ray bursts & relativistic jets. Physics Reports 561:1–109, 2015. https://doi.org/10.1016/j.physrep.2014.09.008

W. A. Wheaton, M. P. Ulmer, W. A. Baity, et al. The direction and spectral variability of a cosmic gamma-ray burst. The Astrophysical Journal 185:L57–L61, 1973. https://doi.org/10.1086/181320

D. Eichler, M. Livio, T. Piran, D. N. Schramm. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340(6229):126–128, 1989. https://doi.org/10.1038/340126a0

A. I. MacFadyen, S. E. Woosley. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. The Astrophysical Journal 524(1):262, 1999. https://doi.org/10.1086/307790

B. Zhang, P. Mészáros. An analysis of gamma-ray burst spectral break models. The Astrophysical Journal 581(2):1236, 2002. https://doi.org/10.1086/344338

B. P. Abbott, R. Abbott, T. D. Abbott, et al. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Physical Review Letters 119(14):141101, 2017. https://doi.org/10.1103/PhysRevLett.119.141101

A. Goldstein, P. Veres, E. Burns, et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophysical Journal Letters 848(2):L14, 2017. https://doi.org/10.3847/2041-8213/aa8f41

Z. Bagoly, D. Szécsi, L. G. Balázs, et al. Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astronomy & Astrophysics 593:L10, 2016. https://doi.org/10.1051/0004-6361/201628569

Z. Bagoly, D. Szécsi, L. G. Balázs, et al. Fermi GBM transient searches with ADWO. Contributions of the Astronomical Observatory Skalnaté Pleso 47(2):76–83, 2017.

I. Horváth, B. G. Tóth, J. Hakkila, et al. Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane. Astrophysics and Space Science 363(3):53, 2018. https://doi.org/10.1007/s10509-018-3274-5

I. Horváth. A third class of gamma-ray bursts? The Astrophysical Journal 508(2):757, 1998. https://doi.org/10.1086/306416

S. Mukherjee, E. D. Feigelson, G. Jogesh Babu, et al. Three types of gamma-ray bursts. The Astrophysical Journal 508(1):314, 1998. https://doi.org/10.1086/306386

I. Horváth, A. Mészáros, L. G. Balázs, Z. Bagoly. Where is the 3rd subgroup of GRBs? Baltic Astronomy 13:217–220, 2004. https://doi.org/10.48550/arXiv.astro-ph/0507688

I. Horváth, L. G. Balázs, Z. Bagoly, et al. A new definition of the intermediate group of gamma-ray bursts. Astronomy & Astrophysics 447(1):23–30, 2006. https://doi.org/10.1051/0004-6361:20041129

J. Kóbori, Z. Bagoly, L. G. Balázs. Kilonova rates from spherical and axisymmetrical models. Monthly Notices of the Royal Astronomical Society 494(3):4343–4348, 2020. https://doi.org/10.1093/mnras/staa1034

I. Horváth, Z. Bagoly, L. G. Balázs, et al. Detailed classification of Swift’s gamma-ray bursts. The Astrophysical Journal 713(1):552, 2010. https://doi.org/10.1088/0004-637X/713/1/552

P. Veres, Z. Bagoly, I. Horváth, et al. A distinct peak-flux distribution of the third class of gamma-ray bursts: A possible signature of X-ray flashes? The Astrophysical Journal 725(2):1955, 2010. https://doi.org/10.1088/0004-637X/725/2/1955

S. Pinter, Z. Bagoly, L. G. Balázs, et al. Resolving the structure of the galactic foreground using Herschel measurements and the Kriging technique. Proceedings of the International Astronomical Union 12(S333):168–169, 2017. https://doi.org/10.1017/S1743921317011097

X. Bi, J. Mao, C. Liu, J.-M. Bai. Statistical study of the Swift X-ray flash and X-ray rich gamma-ray bursts. The Astrophysical Journal 866(2):97, 2018. https://doi.org/10.3847/1538-4357/aadcf8

B. Zhang. The physics of gamma-ray bursts. Cambridge University Press, 2018. https://doi.org/10.1017/9781139226530

B. G. Tóth, I. I. Rácz, I. Horváth. Gaussian-mixture-model-based cluster analysis of gamma-ray bursts in the BATSE catalog. Monthly Notices of the Royal Astronomical Society 486(4):4823–4828, 2019. https://doi.org/10.1093/mnras/stz1188

D. N. Burrows, J. E. Hill, J. A. Nousek, et al. The Swift X-ray telescope. Space Science Reviews 120(3):165–195, 2005. https://doi.org/10.1007/s11214-005-5097-2

J. E. Hill, M. E. Zugger, J. Shoemaker, et al. Laboratory X-ray CCD camera electronics: A test bed for the Swift X-Ray telescope. In K. A. Flanagan, O. H. Siegmund (eds.), X-Ray and Gamma-Ray Instrumentation for Astronomy XI, vol. 4140, pp. 87–98. International Society for Optics and Photonics, 2000. https://doi.org/10.1117/12.409162

University of Leicester, UK Swift Science Data Centre. The swift burst analyser – GRB 080129. [2024-08-19]. https://www.swift.ac.uk/burst_analyser/00301981

M. Kendall, A. Stuart. The advanced theory of statistics: Inference and relationship. The advanced theory of statistics. C. Griffin, 1976. ISBN 9780028476308.

W. Hardle, L. Simar. Applied multivariate statistical analysis. Springer, Berlin, Germany, 2nd edn., 2007.

I. González, S. Déjean. CCA: Canonical correlation analysis, 2007.

R. Nath, R. Pavur. A new statistic in the one-way multivariate analysis of variance. Computational Statistics & Data Analysis 2(4):297–315, 1985. https://doi.org/10.1016/0167-9473(85)90003-9

I. I. Rácz, Z. Bagoly, L. V. Tóth, et al. Galactic and extragalactic hydrogen in the X-ray spectra of gamma ray bursts. Contributions of the Astronomical Observatory Skalnaté Pleso 47(2):100–107, 2017.

H. Dénes, P. A. Jones, L. V. Tóth, et al. Exploring the pattern of the Galactic H I foreground of GRBs with the ATCA. Monthly Notices of the Royal Astronomical Society 489(3):3778–3796, 2019. https://doi.org/10.1093/mnras/stz2314

P. A. Evans, A. P. Beardmore, K. L. Page, et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Monthly Notices of the Royal Astronomical Society 397(3):1177–1201, 2009. https://doi.org/10.1111/j.1365-2966.2009.14913.x

L. V. Tóth, S. Hotzel, O. Krause, et al. ISOPHOT serendipity survey observations of interstellar clouds I. Detection of the coldest cores in Chamaeleon. Astronomy & Astrophysics 364:769–779, 2000.

L. V. Tóth, M. Haas, D. Lemke, et al. Very cold cores in the Taurus molecular ring as seen by ISO. Astronomy & Astrophysics 420(2):533–546, 2004. https://doi.org/10.1051/0004-6361:20035611

Planck Collaboration. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations. Astronomy & Astrophysics 586:A132, 2016. https://doi.org/10.1051/0004-6361/201424945

L. Cambrésy, G. Marton, O. Feher, et al. Young stellar clusters in the Rosette molecular cloud. Arguments against triggered star formation. Astronomy & Astrophysics 557:A29, 2013. https://doi.org/10.1051/0004-6361/201321235

L. V. Toth, Y. Doi, S. Zahorecz, et al. Galactic foreground of gamma-ray bursts from AKARI far-infrared surveyor. Publications of the Astronomical Society of Japan 71(1):10, 2019. https://doi.org/10.1093/pasj/psy123

T. Güver, F. Özel. The relation between optical extinction and hydrogen column density in the Galaxy. Monthly Notices of the Royal Astronomical Society 400(4):2050–2053, 2009. https://doi.org/10.1111/j.1365-2966.2009.15598.x

L. V. Toth, L. K. Haikala, T. Liljestroem, K. Mattila. L 1780: A cometary globule associated with Loop I? Astronomy & Astrophysics 295:755–766, 1995.

P. Harjunpää. Carbon monoxide emission, optical extinction and polarization in nearby molecular clouds. Ph.D. thesis, University of Helsinki, Finland, 2005.

Downloads

Published

2025-03-06

How to Cite

Racz, I. I., Balazs, L. G., Horvath, I., & Pinter, S. (2025). Correlation between X-ray and gamma data of Swift measurements. Acta Polytechnica, 65(1), 92-100. https://doi.org/10.14311/AP.2025.65.0092