Mass growth of massive quiescent galaxies in the Illustris TNG simulation
DOI:
https://doi.org/10.14311/AP.2025.65.0065Keywords:
galaxies: evolution, galaxies: star formation, galaxies: interactions, methods: numericalAbstract
Interactions between galaxies could potentially lead to increased rates of star formation within these galaxies, potentially leading to the occurrence of multiple core-collapse supernovae and the ejection of hot gas. Numerical simulations are crucial for understanding the formation and evolution of galaxies. Using the IllustrisTNG cosmological simulation, we show how the massive quiescent galaxies evolve in cosmic times. We use the merger tree from the TNG300-1 simulation to demonstrate the impact of dwarf galaxies on the mass augmentation of these galaxies during the early Universe. We made a galaxy sample with restrictions on the specific star formation rate log(sSFR) and mass (M). Most of the mergers have a <1:1 000 ratio to the host galaxy and 5–25% of the falling material is connected to the merger events. These results show that dwarf galaxies could play a significant role in the growth of these massive galaxies.
Downloads
References
M. Stickel, S. Bogun, D. Lemke, et al. The ISOPHOT far-infrared serendipity north ecliptic pole minisurvey. Astronomy & Astrophysics 336:116–122, 1998.
L. V. Tóth, S. Hotzel, O. Krause, et al. ISOPHOT serendipity survey observations of interstellar clouds I. Detection of the coldest cores in chamaeleon. Astronomy & Astrophysics 364:769–779, 2000.
P. Héraudeau, S. Oliver, C. del Burgo, et al. The European large area ISO survey – VIII. 90-μm final analysis and source counts. Monthly Notices of the Royal Astronomical Society 354(3):924–934, 2004. https://doi.org/10.1111/j.1365-2966.2004.08259.x
M. F. Kessler, J. A. Steinz, M. E. Anderegg, et al. The Infrared Space Observatory (ISO) mission. Astronomy & Astrophysics 315(2):L27–L31, 1996.
P. Madau, M. Dickinson. Cosmic star-formation history. Annual Review of Astronomy and Astrophysics 52:415–486, 2014. https://doi.org/10.1146/annurevastro-081811-125615
N. Suleiman, A. Noboriguchi, Y. Toba, et al. The statistical properties of 28 IR-bright dust-obscured galaxies and SED modelling using CIGALE. Publications of the Astronomical Society of Japan 74(5):1157–1185, 2022. https://doi.org/10.1093/pasj/psac061
I. I. Rácz, A. J. Hortobagyi. Studying the variability of the X-ray spectral parameters of high-redshift GRBs’ afterglows. Astronomische Nachrichten 339(5):347–351, 2018. https://doi.org/10.1002/asna.201813503
I. I. Rácz, L. G. Balázs, I. Horvath, et al. Statistical properties of Fermi GBM GRBs’ spectra. Monthly Notices of the Royal Astronomical Society 475(1):306–320, 2018. https://doi.org/10.1093/mnras/stx3152
I. Horvath, I. I. Rácz, Z. Bagoly, et al. Does the GRB duration depend on redshift? Universe 8(4):221, 2022. https://doi.org/10.3390/universe8040221
L. G. Balázs, A. Mészáros, I. Horváth, R. Vavrek. An intrinsic anisotropy in the angular distribution of gamma-ray bursts. Astronomy and Astrophysics Supplement Series 138:417–418, 1999. https://doi.org/10.1051/aas:1999290
A. Mészáros, Z. Bagoly, I. Horváth, et al. A remarkable angular distribution of the intermediate subclass of gamma-ray bursts. The Astrophysical Journal 539(1):98, 2000. https://doi.org/10.1086/309193
A. Mészáros, Z. Bagoly, R. Vavrek. On the existence of the intrinsic anisotropies in the angular distributions of gamma-ray bursts. Astronomy & Astrophysics 354:1–6, 2000. https://doi.org/10.48550/arXiv.astro-ph/9912037
R. Vavrek, L. G. Balázs, A. Mészáros, et al. Testing the randomness in the sky-distribution of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 391(4):1741–1748, 2008. https://doi.org/10.1111/j.1365-2966.2008.13635.x
A. Pontzen, M. Tremmel, N. Roth, et al. How to quench a galaxy. Monthly Notices of the Royal Astronomical Society 465(1):547–558, 2016. https://doi.org/10.1093/mnras/stw2627
S. L. Ellison, S. Wilkinson, J. Woo, et al. Galaxy mergers can rapidly shut down star formation. Monthly Notices of the Royal Astronomical Society: Letters 517(1):L92–L96, 2022. https://doi.org/10.1093/mnrasl/slac109
C. Mancini, A. Renzini, E. Daddi, et al. Star formation and quenching among the most massive galaxies at z ∼1.7. Monthly Notices of the Royal Astronomical Society 450(1):763–786, 2015. https://doi.org/10.1093/mnras/stv608
G. Barro, S. M. Faber, A. Dekel, et al. Caught in the act: Gas and stellar velocity dispersions in a fast quenching compact star-forming galaxy at z ∼ 1.7. The Astrophysical Journal 820(2):120, 2016. https://doi.org/10.3847/0004-637X/820/2/120
D. Nelson, A. Pillepich, V. Springel, et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Monthly Notices of the Royal Astronomical Society 475(1):624–647, 2018. https://doi.org/10.1093/mnras/stx3040
F. Marinacci, M. Vogelsberger, R. Pakmor, et al. First results from the IllustrisTNG simulations: Radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society 480(4):5113–5139, 2018. https://doi.org/10.1093/mnras/sty2206
A. Pillepich, D. Nelson, L. Hernquist, et al. First results from the IllustrisTNG simulations: The stellar mass content of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society 475(1):648–675, 2018. https://doi.org/10.1093/mnras/stx3112
V. Springel, R. Pakmor, A. Pillepich, et al. First results from the IllustrisTNG simulations: Matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society 475(1):676–698, 2018. https://doi.org/10.1093/mnras/stx3304
J. P. Naiman, A. Pillepich, V. Springel, et al. First results from the IllustrisTNG simulations: A tale of two elements – chemical evolution of magnesium and europium. Monthly Notices of the Royal Astronomical Society 477(1):1206–1224, 2018. https://doi.org/10.1093/mnras/sty618
S. Genel, D. Nelson, A. Pillepich, et al. The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society 474(3):3976–3996, 2018. https://doi.org/10.1093/mnras/stx3078
J. J. Davies, R. A. Crain, B. D. Oppenheimer, J. Schaye. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Monthly Notices of the Royal Astronomical Society 491(3):4462–4480, 2020. https://doi.org/10.1093/mnras/stz3201
Y. Luo, Z. Li, X. Kang, et al. What has quenched the massive spiral galaxies? Monthly Notices of the Royal Astronomical Society: Letters 496(1):L116–L121, 2020. https://doi.org/10.1093/mnrasl/slaa099
S. Quai, M. H. Hani, S. L. Ellison, et al. Interacting galaxies in the IllustrisTNG simulations – III. (The rarity of) quenching in post-merger galaxies. Monthly Notices of the Royal Astronomical Society 504(2):1888–1901, 2021. https://doi.org/10.1093/mnras/stab988
Y. Xu, Y. Luo, X. Kang, et al. Quenching of massive disk galaxies in the IllustrisTNG simulation. The Astrophysical Journal 928(2):100, 2022. https://doi.org/10.3847/1538-4357/ac53ab
V. Rodriguez-Gomez, S. Genel, M. Vogelsberger, et al. The merger rate of galaxies in the Illustris simulation: A comparison with observations and semi-empirical models. Monthly Notices of the Royal Astronomical Society 449(1):49–64, 2015. https://doi.org/10.1093/mnras/stv264
V. Springel, S. D. M. White, A. Jenkins, et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435(7042):629–636, 2005. https://doi.org/10.1038/nature03597
B. Koncz, A. P. Joó, S. Pintér. Investigating star formation in Illustris TNG galaxy mergers. Contributions of the Astronomical Observatory Skalnaté Pleso 53(4):153–163, 2023. https://doi.org/10.31577/caosp.2023.53.4.153
G. Fragione, A. Loeb. Constraining the Milky Way mass with hypervelocity stars. New Astronomy 55:32–38, 2017. https://doi.org/10.1016/j.newast.2017.03.002
E. L. Łokas. Tidal evolution of galaxies in the most massive cluster of IllustrisTNG-100. Astronomy & Astrophysics 638:A133, 2020. https://doi.org/10.1051/0004-6361/202037643
T. M. Jackson, A. Pasquali, C. Pacifici, et al. The stellar mass assembly of low-redshift, massive, central galaxies in SDSS and the TNG300 simulation. Monthly Notices of the Royal Astronomical Society 497(4):4262–4275, 2020. https://doi.org/10.1093/mnras/staa2306
G. Zeng, L. Wang, L. Gao. Formation of massive disc galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society 507(3):3301–3311, 2021. https://doi.org/10.1093/mnras/stab2294
Eötvös Loránd University. The High Energy Astronomy Research Team (HEART), 2025. [2024-07-10]. https://physics.elte.hu/KRFT_heart
Downloads
Published
License
Copyright (c) 2025 Bendegúz Koncz, András Péter Joó

This work is licensed under a Creative Commons Attribution 4.0 International License.