STDweb: simple transient detection pipeline for the web
DOI:
https://doi.org/10.14311/AP.2025.65.0050Keywords:
photometric pipelines, transients, image processingAbstract
We present a simple web-based tool, STDWeb, for a quick-look photometry and transient detection in astronomical images. It tries to implement a self-consistent and mostly automatic data analysis workflow that would work on any image uploaded to it, allowing to perform basic interactive masking, object detection, astrometric calibration of the image, and building the photometric solution based on a selection of catalogues and supported filters, optionally including the colour term and positionally varying zero point. It also allows you to do image subtraction using either user-provided or automatically downloaded template images, and do a forced photometry for a specified target in either original or difference images, as well as transient detection with basic rejection of artefacts. The tool may be easily deployed allowing its integration into the infrastructure of robotic telescopes or data archives for an effortless analysis of their images.
Downloads
References
Y. Cao, P. E. Nugent, M. M. Kasliwal. Intermediate Palomar Transient Factory: Realtime image subtraction pipeline. Publications of the Astronomical Society of the Pacific 128(969):114502, 2016. https://doi.org/10.1088/1538-3873/128/969/114502
E. C. Bellm, S. R. Kulkarni, M. J. Graham, et al. The Zwicky Transient Facility: System overview, performance, and first results. Publications of the Astronomical Society of the Pacific 131(995):018002, 2019. https://doi.org/10.1088/1538-3873/aaecbe
E. A. Magnier, W. E. Sweeney, K. C. Chambers, et al. Pan-STARRS pixel analysis: Source detection and characterization. The Astrophysical Journal Supplement Series 251(1):5, 2020. https://doi.org/10.3847/1538-4365/abb82c
D. Steeghs, D. K. Galloway, K. Ackley, et al. The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science. Monthly Notices of the Royal Astronomical Society 511(2):2405–2422, 2022. https://doi.org/10.1093/mnras/stac013
S. Agayeva, V. Aivazyan, S. Alishov, et al. The GRANDMA network in preparation for the fourth gravitational-wave observing run. In D. S. Adler, R. L. Seaman, C. R. Benn (eds.), Observatory Operations: Strategies, Processes, and Systems IX, vol. 12186, p. 121861H. International Society for Optics and Photonics, SPIE, 2022. https://doi.org/10.1117/12.2630240
V. Aivazyan, M. Almualla, S. Antier, et al. GRANDMA observations of ZTF/Fink transients during summer 2021. Monthly Notices of the Royal Astronomical Society 515(4):6007–6022, 2022. https://doi.org/10.1093/mnras/stac2054
I. Tosta e Melo, J.-G. Ducoin, Z. Vidadi, et al. Ready for O4 II: GRANDMA observations of Swift GRBs over eight weeks in spring 2022. Astronomy & Astrophysics 682:A141, 2024. https://doi.org/10.1051/0004-6361/202347938
D. Turpin. Kilonova-catcher: A new citizen science project to explore the multi-messenger transient sky. In J. Richard, A. Siebert, E. Lagadec, et al. (eds.), SF2A-2022: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp. 153–157. 2022.
D. Tody. The IRAF data reduction and analysis system. In D. L. Crawford (ed.), Instrumentation in astronomy VI, vol. 627, pp. 733–748. International Society for Optics and Photonics, SPIE, 1986. https://doi.org/10.1117/12.968154
P. B. Stetson. DAOPHOT: A computer program for crowded-field stellar photometry. Publications of the Astronomical Society of the Pacific 99(613):191, 1987. https://doi.org/10.1086/131977
E. Bertin, S. Arnouts. SExtractor: Software for source extraction. Astronomy and Astrophysics Supplement Series 117(2):393–404, 1996. https://doi.org/10.1051/aas:1996164
The Astropy Collaboration. Astropy: A community Python package for astronomy. Astronomy & Astrophysics 558:A33, 2013. https://doi.org/10.1051/0004-6361/201322068
L. Bradley, B. Sipőcz, T. Robitaille, et al. Astropy/photutils: 1.0.0, 2020. https://doi.org/10.5281/zenodo.4044744
S. Antier, S. Agayeva, V. Aivazyan, et al. The first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society 492(3):3904–3927, 2020. https://doi.org/10.1093/mnras/stz3142
S. Antier, S. Agayeva, M. Almualla, et al. GRANDMA observations of advanced LIGO’s and advanced Virgo’s third observational campaign. Monthly Notices of the Royal Astronomical Society 497(4):5518–5539, 2020. https://doi.org/10.1093/mnras/staa1846
S. Karpov. STDPipe: Simple Transient Detection Pipeline. Astrophysics Source Code Library ascl:2112.006, 2021.
D. Lang, D. W. Hogg, K. Mierle, et al. Astrometry.net: Blind astrometric calibration of arbitrary astronomical images. The Astronomical Journal 139(5):1782, 2010. https://doi.org/10.1088/0004-6256/139/5/1782
S. Karpov. STDWeb – Simple Transient Detection for the Web, 2025. [2025-02-26]. https://github.com/karpov-sv/stdweb
Django Software Foundation and individual contributors. The web framework for perfectionists with deadlines – Django, 2025. [2025-02-26]. https://www.djangoproject.com
Ask Solem & contributors. Celery – Distributed task queue – Celery 5.4.0 documentation, 2023. [2025-02-26]. https://docs.celeryq.dev/
S. Karpov. STDPipe – Simple Transient Detection Pipeline, 2025. [2025-02-26]. https://github.com/karpov-sv/stdpipe
S. Karpov. STDPipe – Simple Transient Detection Pipeline – STDPipe 0.2.2 documentation, 2022. [2025-02-26]. https://stdpipe.readthedocs.io/
E. Bertin. Automatic astrometric and photometric calibration with SCAMP. In C. Gabriel, C. Arviset, D. Ponz, S. Enrique (eds.), Astronomical Data Analysis Software and Systems XV, vol. 351 of Astronomical Society of the Pacific Conference Series, p. 112. 2006.
E. Bertin. SWarp: Resampling and co-adding FITS images together. Astrophysics Source Code Library ascl:1010.068, 2010.
A. Becker. HOTPANTS: High Order Transform of PSF ANd Template Subtraction. Astrophysics Source Code Library ascl:1504.004, 2015.
J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9(3):90–95, 2007. https://doi.org/10.1109/MCSE.2007.55
C. McCully, M. Tewes. Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python. Astrophysics Source Code Library ascl:1907.032, 2019.
A. Ginsburg, B. M. Sipőcz, C. E. Brasseur, et al. Astroquery: An astronomical web-querying package in Python. The Astronomical Journal 157(3):98, 2019. https://doi.org/10.3847/1538-3881/aafc33
T. Robitaille, C. Deil, A. Ginsburg. Reproject: Python-based astronomical image reprojection. Astrophysics Source Code Library ascl:2011.023, 2020.
F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830, 2011.
P. G. van Dokkum. Cosmic-ray rejection by Laplacian edge detection. Publications of the Astronomical Society of the Pacific 113(789):1420, 2001. https://doi.org/10.1086/323894
M. Wenger, F. Ochsenbein, D. Egret, et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astronomy and Astrophysics Supplement Series 143(1):9–22, 2000. https://doi.org/10.1051/aas:2000332
A. Gal-Yam. The TNS alert system. Bulletin of the American Astronomical Society 53(1):2021n1i423p05, 2021.
F. T. Liu, K. M. Ting, Z.-H. Zhou. Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. 2008. https://doi.org/10.1109/ICDM.2008.17
A. C. Becker, N. M. Silvestri, R. E. Owen, et al. In pursuit of LSST science requirements: A comparison of photometry algorithms. Publications of the Astronomical Society of the Pacific 119(862):1462, 2007. https://doi.org/10.1086/524710
M. Annunziatella, A. Mercurio, M. Brescia, et al. Inside catalogs: A comparison of source extraction software. Publications of the Astronomical Society of the Pacific 125(923):68, 2013. https://doi.org/10.1086/669333
E. Bertin. Automated Morphometry with SExtractor and PSFEx. In I. N. Evans, A. Accomazzi, D. J. Mink, A. H. Rots (eds.), Astronomical Data Analysis Software and Systems XX, vol. 442 of Astronomical Society of the Pacific Conference Series, p. 435. 2011.
F. Ochsenbein, P. Bauer, J. Marcout. The VizieR database of astronomical catalogues. Astronomy and Astrophysics Supplement Series 143(1):23–32, 2000. https://doi.org/10.1051/aas:2000169
K. C. Chambers, E. A. Magnier, N. Metcalfe, et al. The Pan-STARRS1 surveys. arXiv 1612.05560, 2016. https://doi.org/10.48550/arXiv.1612.05560
C. A. Onken, C. Wolf, M. S. Bessell, et al. SkyMapper Southern Survey: Data release 4. arXiv 2402.02015, 2024. https://doi.org/10.48550/arXiv.2402.02015
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astronomy & Astrophysics 649:A1, 2021. [Erratum: Astronomy & Astrophysics 650:C3, 2021]. https://doi.org/10.1051/0004-6361/202039657
J. L. Tonry, L. Denneau, H. Flewelling, et al. The ATLAS All-Sky Stellar Reference Catalog. The Astrophysical Journal 867(2):105, 2018. https://doi.org/10.3847/1538-4357/aae386
Gaia Collaboration. Gaia Data Release 3. The Galaxy in your preferred colours: Synthetic photometry from Gaia low-resolution spectra. Astronomy & Astrophysics 674:A33, 2023. https://doi.org/10.1051/0004-6361/202243709
S. Karpov. stdpipe/stdpipe/catalogs.py at master – karpov-svstdpipe, 2024. [2025-02-26]. https://github.com/karpovsv/stdpipe/blob/master/stdpipe/catalogs.py
E. Pancino, P. M. Marrese, S. Marinoni, et al. The Gaia EDR3 view of Johnson-Kron-Cousins standard stars: The curated Landolt and Stetson collections. Astronomy & Astrophysics 664:A109, 2022. https://doi.org/10.1051/0004-6361/202243939
T. Boch, P. Fernique, F. Bonnarel, et al. HiPS2FITS: Fast generation of FITS cutouts from HiPS image datasets. In R. Pizzo, E. R. Deul, J. D. Mol, et al. (eds.), Astronomical Data Analysis Software and Systems XXIX, vol. 527 of Astronomical Society of the Pacific Conference Series, p. 121. 2020.
F.-X. Pineau, T. Boch, S. Derrière, A. Schaaff. The CDS cross-match service: Key figures, internals and future plans. In P. Ballester, J. Ibsen, M. Solar, K. Shortridge (eds.), Astronomical Data Analysis Software and Systems XXVII, vol. 522 of Astronomical Society of the Pacific Conference Series, p. 125. 2020.
J. Berthier, F. Vachier, W. Thuillot, et al. SkyBoT: A new VO service to identify Solar System objects. In C. Gabriel, C. Arviset, D. Ponz, S. Enrique (eds.), Astronomical Data Analysis Software and Systems XV, vol. 351 of Astronomical Society of the Pacific Conference Series, p. 367. 2006.
C. Alard, R. H. Lupton. A method for optimal image subtraction. The Astrophysical Journal 503(1):325, 1998. https://doi.org/10.1086/305984
B. Zackay, E. O. Ofek, A. Gal-Yam. Proper image subtraction – Optimal transient detection, photometry, and hypothesis testing. The Astrophysical Journal 830(1):27, 2016. https://doi.org/10.3847/0004-637X/830/1/27
A. Dey, D. J. Schlegel, D. Lang, et al. Overview of the DESI legacy imaging surveys. The Astronomical Journal 157(5):168, 2019. https://doi.org/10.3847/1538-3881/ab089d
F. Bonnarel, P. Fernique, O. Bienaymé, et al. The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources. Astronomy and Astrophysics Supplement Series 143(1):33–40, 2000. https://doi.org/10.1051/aas:2000331
D. A. Duev, A. Mahabal, F. J. Masci, et al. Real-bogus classification for the Zwicky Transient Facility using deep learning. Monthly Notices of the Royal Astronomical Society 489(3):3582–3590, 2019. https://doi.org/10.1093/mnras/stz2357
K. Makhlouf, D. Turpin, D. Corre, et al. O’TRAIN: A robust and flexible ‘real or bogus’ classifier for the study of the optical transient sky. Astronomy & Astrophysics 664:A81, 2022. https://doi.org/10.1051/0004-6361/202142952
S. J. Brennan, M. Fraser. The Automated Photometry of Transients pipeline (AUTOPHOT). Astronomy & Astrophysics 667:A62, 2022. https://doi.org/10.1051/0004-6361/202243067
M. Mommert. PHOTOMETRYPIPELINE: An automated pipeline for calibrated photometry. Astronomy and Computing 18:47–53, 2017. https://doi.org/10.1016/j.ascom.2016.11.002
K. V. Sokolovsky, A. A. Lebedev. VaST: A variability search toolkit. Astronomy and Computing 22:28–47, 2018. https://doi.org/10.1016/j.ascom.2017.12.001
K. A. Collins, J. F. Kielkopf, K. G. Stassun, F. V. Hessman. AstroImageJ: Image processing and photometric extraction for ultra-precise astronomical light curves. The Astronomical Journal 153(2):77, 2017. https://doi.org/10.3847/1538-3881/153/2/77
R. R. Laher, V. Gorjian, L. M. Rebull, et al. Aperture photometry tool. Publications of the Astronomical Society of the Pacific 124(917):737, 2012. https://doi.org/10.1086/666883
Pleiades Astrophoto. Pixinsight – pleiades astrophoto, 2025. [2025-02-26]. https://pixinsight.com
Gxccd.com. SIPS (Scientific Image Processing System), 2025. [2025-02-26]. https://www.gxccd.com/cat?id=146&lang=405
Aavso.org. VPhot. [2025-02-26]. https://apps.aavso.org/vphot/
A. Möller, J. Peloton, E. E. O. Ishida, et al. FINK, a new generation of broker for the LSST community. Monthly Notices of the Royal Astronomical Society 501(3):3272–3288, 2021. https://doi.org/10.1093/mnras/staa3602
Downloads
Published
License
Copyright (c) 2025 Sergey Karpov

This work is licensed under a Creative Commons Attribution 4.0 International License.