Early steep optical decay linked to reverse shock for GRB200131A

Authors

  • Martin Jelínek Czech Academy of Sciences, Astronomical Institute, 251 65 Ondřejov, Czech Republic https://orcid.org/0000-0003-3922-7416
  • Filip Novotný Czech Academy of Sciences, Astronomical Institute, 251 65 Ondřejov, Czech Republic; University of Potsdam, Institute for Physics and Astronomy, Karl-Liebknecht-Strasse 24/25, 144 76 Potsdam, Germany
  • Sylvio Klose Thüringer Landessternwarte (TLS) Tautenburg, Sternwarte 5, 077 78 Tautenburg, Germany https://orcid.org/0000-0001-8413-7917
  • Bringfried Stecklum Thüringer Landessternwarte (TLS) Tautenburg, Sternwarte 5, 077 78 Tautenburg, Germany https://orcid.org/0000-0001-6091-163X
  • Alžběta Maleňáková Czech Academy of Sciences, Astronomical Institute, 251 65 Ondřejov, Czech Republic; Charles University, Faculty of Mathematics and Physics, Astronomical Institute, Ke Karlovu 3, 121 16 Prague, Czech Republic https://orcid.org/0000-0002-0636-9138
  • Jan Štrobl Czech Academy of Sciences, Astronomical Institute, 251 65 Ondřejov, Czech Republic b University of Potsdam, Institute for Physics and Astronomy, Karl-Liebknecht-Strasse 24 https://orcid.org/0000-0002-4147-2878

DOI:

https://doi.org/10.14311/AP.2025.65.0033

Keywords:

Gamma-ray bursts, photometry

Abstract

We observed an optical afterglow of GRB200131A obtaining the first photometric point 63 s after the satellite trigger. This early observation shows a steep decay, suggesting either internal engine activity or a reverse shock. By fitting this data set, we show that the early data fit well as a reverse shock component of the GRB afterglow modeled as a thin shell expanding into a constant density interstellar matter. The fitting also shows a good agreement with a catalogued Milky Way galactic extinction and leaves little room for further extinction in the host galaxy. By judging several factors we conclude that the most likely redshift of this GRB is 0.9 ± 0.1.

Downloads

Download data is not yet available.

References

N. Gehrels, P. Mészáros. Gamma-ray bursts. Science 337(6097):932–936, 2012. https://doi.org/10.1126/science.1216793

E. McMahon, P. Kumar, T. Piran. Reverse shock emission as a probe of gamma-ray burst ejecta. Monthly Notices of the Royal Astronomical Society 366(2):575–585, 2006. https://doi.org/10.1111/j.1365-2966.2005.09884.x

B. Sbarufatti, D. N. Burrows, J. D. Gropp, et al. GRB 200131A: Swift detection of a burst with an optical counterpart. GRB Coordinates Network 26953, 2020.

D. Svinkin, S. Golenetskii, R. Aptekar, et al. Konus-Wind observation of GRB 200131A. GRB Coordinates Network 26975, 2020.

N. P. M. Kuin, B. Sbarufatti, et al. GRB 200131A: Swift/UVOT detection. GRB Coordinates Network 26962, 2020.

N. Butler, A. M. Watson, A. Kutyrev, et al. GRB 200131A: RATIR optical observations. GRB Coordinates Network 26957, 2020.

A. M. Watson, N. Butler, A. Kutyrev, et al. GRB 200131A: Further RATIR optical observations. GRB Coordinates Network 26977, 2020.

R. Strausbaugh, A. Cucchiara, et al. GRB 200131A: LCO optical detection. GRB Coordinates Network 26959, 2020.

P. Gokuldass, D. Morris, N. Orange, et al. GRB 200131A: VIRT optical transient detection. GRB Coordinates Network 26960, 2020.

J. Štrobl, M. Jelínek, R. Hudec. Small binocular telescope: The new epoch of burst alert robotic telescope. Astronomische Nachrichten 340(7):633–637, 2019. https://doi.org/10.1002/asna.201913668

B. Stecklum, J. Eislöffel, S. Klose, et al. TAUKAM: A new prime-focus camera for the Tautenburg Schmidt Telescope. In C. J. Evans, L. Simard, H. Takami (eds.), Ground-based and Airborne Instrumentation for Astronomy VI, vol. 9908, p. 99084U. 2016. https://doi.org/10.1117/12.2232872

A. Ritter, C. Huang. Transformations from standard photometric systems to the Gaia passbands. Journal of Physics Conference Series 1593(1):012039, 2020. https://doi.org/10.1088/1742-6596/1593/1/012039

B. Stecklum, S. Klose, A. Nicuesa Guelbenzu, C. Hoegner. GRB 200131A: Tautenburg observations. GRB Coordinates Network 27035, 2020.

Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astronomy & Astrophysics 616:A1, 2018.

https://doi.org/10.1051/0004-6361/201833051

M. Jelínek. Photometric pipeline for robotic telescopes. Contributions of the Astronomical Observatory Skalnaté Pleso 53(4):127–135, 2023. https://doi.org/10.31577/caosp.2023.53.4.127

J. L. Tonry, L. Denneau, H. Flewelling, et al. The ATLAS all-sky stellar reference catalog. The Astrophysical Journal 867(2):105, 2018. https://doi.org/10.3847/1538-4357/aae386

A. Pozanenko, V. Kim, I. Reva, et al. GRB 200131A: CDK700 optical observations. GRB Coordinates Network 26964, 2020.

A. Pozanenko, S. Schmalz, V. Kim, et al. GRB 200131A: ISON-Castelgrande optical observations. GRB Coordinates Network 26965, 2020.

J. C. Jacob, D. S. Katz, G. B. Berriman, et al. Montage: A grid portal and software toolkit for science-grade astronomical image mosaicking. arXiv p. 1005.4454, 2010. https://doi.org/10.48550/arXiv.1005.4454

J. C. Jacob, D. S. Katz, G. B. Berriman, et al. Montage: An astronomical image mosaicking toolkit. Astrophysics Source Code Library, record ascl:1010.036, 2010.

T. Williams, C. Kelley. Gnuplot 5.4, 2020. [2024-12-1]. http://www.gnuplot.info/

H. A. Flewelling, E. A. Magnier, K. C. Chambers, et al. The Pan-STARRS1 database and data products. The Astrophysical Journal Supplement Series 251(1):7, 2020. https://doi.org/10.3847/1538-4365/abb82d

L. Amati, C. Guidorzi, F. Frontera, et al. Measuring the cosmological parameters with the Ep,i-Eiso correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 391(2):577–584, 2008. https://doi.org/10.1111/j.1365-2966.2008.13943.x

G. Ghirlanda, G. Ghisellini, D. Lazzati. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum. The Astrophysical Journal 616(1):331, 2004. https://doi.org/10.1086/424913

S. Campana, C. Guidorzi, G. Tagliaferri, et al. Are Swift gamma-ray bursts consistent with the Ghirlanda relation? Astronomy & Astrophysics 472(2):395–401, 2007. https://doi.org/10.1051/0004-6361:20066984

P. A. Evans, R. Willingale, J. P. Osborne, et al. The Swift Burst Analyser. I. BAT and XRT spectral and flux evolution of gamma ray bursts. Astronomy & Astrophysics 519:A102, 2010. https://doi.org/10.1051/0004-6361/201014819

T. Piran. Gamma-ray bursts and the fireball model. Physics Reports 314(6):575–667, 1999. https://doi.org/10.1016/S0370-1573(98)00127-6

H. Gao, W.-H. Lei, Y.-C. Zou, et al. A complete reference of the analytical synchrotron external shock models of gamma-ray bursts. New Astronomy Review 57(6):141–190, 2013. https://doi.org/10.1016/j.newar.2013.10.001

Y. Urata, K. Huang, S. Takahashi, et al. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A. The Astrophysical Journal 789(2):146, 2014. https://doi.org/10.1088/0004-637X/789/2/146

S. Kobayashi, B. Zhang, P. Mészáros, D. Burrows. Inverse Compton X-Ray flare from gamma-ray burst reverse shock. The Astrophysical Journal 655(1):391, 2007. https://doi.org/10.1086/510198

Downloads

Published

2025-03-06

How to Cite

Jelínek, M., Novotný, F., Klose, S., Stecklum, B., Maleňáková, A., & Štrobl, J. (2025). Early steep optical decay linked to reverse shock for GRB200131A. Acta Polytechnica, 65(1), 33-39. https://doi.org/10.14311/AP.2025.65.0033