The spatial distribution of GRBs
DOI:
https://doi.org/10.14311/AP.2025.65.0001Keywords:
data analysis, gamma-ray burstsAbstract
We analysed the different aspects of the spatial distribution of 542 Gamma-Ray Bursts with precisely determined positions and spectroscopic redshifts. The data were divided according to the origin of the redshift (afterglow or host galaxy). The yearly rate of afterglow and host-based redshift observations are different, with only a few host observations in the recent years. Since the launch of the Swift, the rate of afterglow observations fall exponentially by 50 % in 15 years, potentially affecting all planned GRB missions. We also analysed the rest-frame T90 values from the Swift BAT and FERMI GBM catalogues with the redshift data. The host- and afterglow-based points are separated in the redshift range due to observational effects, but no direct distinction could be made between the rest-frame T90 values. The correlation analysis between the GRB redshift and sky position shows that the GRB distribution could be factorised into a separate sky and radial components.
Downloads
References
S. E. Woosley. Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal 405:273–277, 1993. https://doi.org/10.1086/172359
S. E. Woosley, J. S. Bloom. The supernova gamma-ray burst connection. Annual Review of Astronomy and Astrophysics 44:507–556, 2006. https://doi.org/10.1146/annurev.astro.43.072103.150558
E. Berger. Short-duration gamma-ray bursts. Annual Review of Astronomy and Astrophysics 52:43–105, 2014. https://doi.org/10.1146/annurev-astro-081913-035926
H. Dénes, P. A. Jones, L. V. Tóth, et al. Exploring the pattern of the Galactic HI foreground of GRBs with the ATCA. Monthly Notices of the Royal Astronomical Society 489(3):3778–3796, 2019. https://doi.org/10.1093/mnras/stz2314
P. Héraudeau, S. Oliver, C. Del Burgo, et al. The European large area ISO survey VIII. 90-μm final analysis and source counts. Monthly Notices of the Royal Astronomical Society 354(3):924–934, 2004. https://doi.org/10.1111/j.1365-2966.2004.08259.x
L. V. Tóth, G. Marton, S. Zahorecz, et al. The AKARI far-infrared surveyor young stellar object catalog. Publications of the Astronomical Society of Japan 66(1):17, 2014. https://doi.org/10.1093/pasj/pst017
L. G. Balázs, A. Mészáros, I. Horváth. Anisotropy of the sky distribution of gamma-ray bursts. Astronomy & Astrophysics 339:1–6, 1998. https://doi.org/10.48550/arXiv.astro-ph/9807006
D. B. Cline, C. Matthey, S. Otwinowski. Study of very short gamma-ray bursts. The Astrophysical Journal 527(2):827–834, 1999. https://doi.org/10.1086/308094
M. Magliocchetti, G. Ghirlanda, A. Celotti. Evidence for anisotropy in the distribution of short-lived gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 343(1):255–258, 2003. https://doi.org/10.1046/j.1365-8711.2003.06657.x
A. Mészáros, Z. Bagoly, I. Horváth, et al. A remarkable angular distribution of the intermediate subclass of gamma-ray bursts. The Astrophysical Journal 539(1):98–101, 2000. https://doi.org/10.1086/309193
A. Mészáros, Z. Bagoly, R. Vavrek. On the existence of the intrinsic anisotropies in the angular distributions of gamma-ray bursts. Astronomy & Astrophysics 354:1–6, 1999. https://doi.org/10.48550/arXiv.astro-ph/9912037
V. F. Litvin, S. A. Matveev, S. V. Mamedov, V. V. Orlov. Anisotropy in the sky distribution of short gamma-ray bursts. Astronomy Letters 27(7):416–420, 2001. https://doi.org/10.1134/1.1381609
R. Vavrek, L. G. Balázs, A. Mészáros, et al. Testing the randomness in the sky-distribution of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 391(4):1741–1748, 2008. https://doi.org/10.1111/j.1365-2966.2008.13635.x
I. Horváth, J. Hakkila, Z. Bagoly. Possible structure in the GRB sky distribution at redshift two. Astronomy and Astrophysics 561:L12, 2014. https://doi.org/10.1051/0004-6361/201323020
I. Horváth, Z. Bagoly, J. Hakkila, L. V. Tóth. New data support the existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics 584:A48, 2015. https://doi.org/10.1051/0004-6361/201424829
I. Horvath, D. Szécsi, J. Hakkila, et al. The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2):2544–2553, 2020. https://doi.org/10.1093/mnras/staa2460
L. G. Balázs, Z. Bagoly, J. E. Hakkila, et al. A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(3):2236–2246, 2015. https://doi.org/10.1093/mnras/stv1421
L. G. Balázs, L. Rejtő, G. Tusnády. Some statistical remarks on the giant GRB ring. Monthly Notices of the Royal Astronomical Society 473(3):3169–3179, 2018. https://doi.org/10.1093/mnras/stx2550
Z. Bagoly, I. I. Rácz, L. G. Balázs, et al. Spatial distribution of GRBs and large scale structure of the Universe. Proceedings of the International Astronomical Union 11(S319):3–4, 2015. https://doi.org/10.1017/S1743921315010820
U. Andrade, C. A. P. Bengaly, J. S. Alcaniz, S. Capozziello. Revisiting the statistical isotropy of GRB sky distribution. Monthly Notices of the Royal Astronomical Society 490(4):4481–4488, 2019. https://doi.org/10.1093/mnras/stz2754
F. Wang, Y.-C. Zou, F. Liu, et al. A comprehensive statistical study of gamma-ray bursts. The Astrophysical Journal 893(1):77, 2020. https://doi.org/10.3847/1538-4357/ab0a86
S. Cao, N. Khadka, B. Ratra. Standardizing Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Monthly Notices of the Royal Astronomical Society 510(2):2928–2947, 2022. https://doi.org/10.1093/mnras/stab3559
S. Cao, M. Dainotti, B. Ratra. Standardizing Platinum Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Monthly Notices of the Royal Astronomical Society 512(1):439–454, 2022. https://doi.org/10.1093/mnras/stac517
J. Řípa, A. Shafieloo. Testing the isotropic universe using the gamma-ray burst data of Fermi/GBM. The Astrophysical Journal 851(1):15, 2017. https://doi.org/10.3847/1538-4357/aa9708
J. Řípa, A. Shafieloo. Update on testing the isotropy of the properties of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 486(3):3027–3040, 2019. https://doi.org/10.1093/mnras/stz921
R. Salvaterra, S. Campana, S. D. Vergani, et al. A complete sample of bright swift long gamma-ray bursts. I. Sample presentation, luminosity function and evolution. The Astrophysical Journal 749(1):68, 2012. https://doi.org/10.1088/0004-637X/749/1/68
A. Pescalli, G. Ghirlanda, R. Salvaterra, et al. The rate and luminosity function of long gamma ray bursts. Astronomy & Astrophysics 587:A40, 2016. https://doi.org/10.1051/0004-6361/201526760
J. T. Palmerio, S. D. Vergani, R. Salvaterra, et al. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. Astronomy & Astrophysics 623:A26, 2019. https://doi.org/10.1051/0004-6361/201834179
R. E. Angulo, V. Springel, S. D. M. White, et al. Scaling relations for galaxy clusters in the Millennium- XXL simulation. Monthly Notices of the Royal Astronomical Society 426(3):2046–2062, 2012. https://doi.org/10.1111/j.1365-2966.2012.21830.x
P. Ciarcelluti. Electrodynamic effect of anisotropic expansions in the universe. Modern Physics Letters A 27(38):1250221, 2012. https://doi.org/10.1142/S0217732312502215
K. Migkas, F. Pacaud, G. Schellenberger, et al. Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astronomy & Astrophysics 649:A151, 2021. https://doi.org/10.1051/0004-6361/202140296
I. Horvath, I. I. Racz, Z. Bagoly, et al. Does the GRB duration depend on redshift? Universe 8(4):221, 2022. https://doi.org/10.3390/universe8040221
Z. Bagoly, I. Horvath, I. I. Racz, et al. The spatial distribution of gamma-ray bursts with measured redshifts from 24 years of observation. Universe 8(7):342, 2022. https://doi.org/10.3390/universe8070342
I. Horvath, Z. Bagoly, L. G. Balazs, et al. Mapping the Universe with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 527(3):7191–7202, 2024. https://doi.org/10.1093/mnras/stad3669
Downloads
Published
License
Copyright (c) 2025 Zsolt Bagoly, Lajos G. Balazs, Zsuzsa Horvath, Istvan Horvath

This work is licensed under a Creative Commons Attribution 4.0 International License.


