The two-point correlation function of the GRBs
DOI:
https://doi.org/10.14311/AP.2025.65.0009Keywords:
data analysis, gamma-ray burstsAbstract
We analysed the spatial distribution of 542 GRBs with measured position and spectroscopic redshift up to 31 Aug 2022. Using kernel smoothing, we determined the GRB’s Sky Exposure Function and used it in the generation of random catalogues. The spatial Two-Point Correlation Function for GRBs was determined by partitioning the data based on the origin of the redshift (afterglow or host galaxy). The resulting ξ(r) Two-Point Correlation functions remain below the 3σ noise level, suggesting no significant differences between the Two-Point Correlation functions of the random and real datasets.
Downloads
References
S. E. Woosley. Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal 405:273, 1993. https://doi.org/10.1086/172359
S. E. Woosley, J. S. Bloom. The supernova gamma-ray burst connection. Annual Review of Astronomy and Astrophysics 44:507–556, 2006. https://doi.org/10.1146/annurev.astro.43.072103.150558
E. Berger. Short-duration gamma-ray bursts. Annual Review of Astronomy and Astrophysics 52:43–105, 2014. https://doi.org/10.1146/annurev-astro-081913-035926
N. R. Tanvir, A. J. Levan, A. S. Fruchter, et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500(7464):547–549, 2013. https://doi.org/10.1038/nature12505
A. von Kienlin, P. Veres, O. J. Roberts, et al. Fermi-GBM GRBs with characteristics similar to GRB 170817A. The Astrophysical Journal 876(1):89, 2019. https://doi.org/10.3847/1538-4357/ab10d8
S. Woosley, J. Bloom. The supernova–gamma-ray burst connection. Annual Review of Astronomy and Astrophysics 44:507–556, 2006. https://doi.org/10.1146/annurev.astro.43.072103.150558
L. G. Balázs, A. Mészáros, I. Horváth. Anisotropy of the sky distribution of gamma-ray bursts. Astronomy & Astrophysics 339:1–6, 1998. https://doi.org/10.48550/arXiv.astro-ph/9807006
D. B. Cline, C. Matthey, S. Otwinowski. Study of very short gamma-ray bursts. The Astrophysical Journal 527(2):827–834, 1999. https://doi.org/10.1086/308094
M. Magliocchetti, G. Ghirlanda, A. Celotti. Evidence for anisotropy in the distribution of short-lived gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 343(1):255–258, 2003. https://doi.org/10.1046/j.1365-8711.2003.06657.x
A. Mészáros, Z. Bagoly, I. Horváth, et al. A remarkable angular distribution of the intermediate subclass of gamma-ray bursts. The Astrophysical Journal 539(1):98–101, 2000. https://doi.org/10.1086/309193
A. Mészáros, Z. Bagoly, R. Vavrek. On the existence of the intrinsic anisotropies in the angular distributions of gamma-ray bursts. Astronomy & Astrophysics 354:1–6, 1999. https://doi.org/10.48550/arXiv.astro-ph/9912037
V. F. Litvin, S. A. Matveev, S. V. Mamedov, V. V. Orlov. Anisotropy in the sky distribution of short gamma-ray bursts. Astronomy Letters 27(7):416–420, 2001. https://doi.org/10.1134/1.1381609
R. Vavrek, L. G. Balázs, A. Mészáros, et al. Testing the randomness in the sky-distribution of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 391(4):1741–1748, 2008. https://doi.org/10.1111/j.1365-2966.2008.13635.x
A. Balastegui, P. Ruiz-Lapuente, R. Canal. Reclassification of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 328(1):283–290, 2001. https://doi.org/10.1046/j.1365-8711.2001.04888.x
I. Horváth, L. G. Balázs, Z. Bagoly, et al. A new definition of the intermediate group of gamma-ray bursts. Astronomy & Astrophysics 447(1):23–30, 2006. https://doi.org/10.1051/0004-6361:20041129
T. Chattopadhyay, R. Misra, A. K. Chattopadhyay, M. Naskar. Statistical evidence for three classes of gamma-ray bursts. The Astrophysical Journal 667(2):1017–1023, 2007. https://doi.org/10.1086/520317
D. Pérez-Ramírez, A. de Ugarte Postigo, J. Gorosabel, et al. Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms. Astronomy & Astrophysics 510:A105, 2010. https://doi.org/10.1051/0004-6361/200811151
I. Horváth, J. Hakkila, Z. Bagoly, et al. Multidimensional analysis of Fermi GBM gamma-ray bursts. Astrophysics and Space Science 364(6):105, 2019. https://doi.org/10.1007/s10509-019-3585-1
M. Tarnopolski. Testing the anisotropy in the angular distribution of Fermi/GBM gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 472(4):4819–4831, 2017. https://doi.org/10.1093/mnras/stx2356
Z. Bagoly, I. Horváth, J. Hakkila, L. V. Tóth. Anomalies in the GRBs’ distribution. Proceedings of the International Astronomical Union 11(S319):2–2, 2015. https://doi.org/10.1017/S1743921315010182
S. I. Shirokov, A. A. Raikov, Y. V. Baryshev. Spatial distribution of gamma-ray burst sources. Astrophysics 60(4):484–496, 2017. https://doi.org/10.1007/s10511-017-9500-y
U. Andrade, C. A. P. Bengaly, J. S. Alcaniz, S. Capozziello. Revisiting the statistical isotropy of GRB sky distribution. Monthly Notices of the Royal Astronomical Society 490(4):4481–4488, 2019. https://doi.org/10.1093/mnras/stz2754
F. Wang, Y.-C. Zou, F. Liu, et al. A comprehensive statistical study of gamma-ray bursts. The Astrophysical Journal 893(1):77, 2020. https://doi.org/10.3847/1538-4357/ab0a86
J. Řípa, A. Shafieloo. Testing the isotropic universe using the gamma-ray burst data of Fermi/GBM. The Astrophysical Journal 851(1):15, 2017. https://doi.org/10.3847/1538-4357/aa9708
J. Řípa, A. Shafieloo. Update on testing the isotropy of the properties of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 486(3):3027–3040, 2019. https://doi.org/10.1093/mnras/stz921
I. Horvath, I. I. Racz, Z. Bagoly, et al. Does the GRB duration depend on redshift? Universe 8(4):221, 2022. https://doi.org/10.3390/universe8040221
D. Perley. GRBOX: Gamma-ray burst online index. [2023-06-01]. https://sites.astro.caltech.edu/grbox/grbox.php
J. Greiner. Gamma-ray burst: Afterglows, 2006. [2023-06-01]. https://www.mpe.mpg.de/~jcg/grb.html
NASA’s High energy astrophysics science archive research center. BATSEGRB – CGRO/BATSE gamma-ray burst catalog, 2024. [2023-06-01]. https://heasarc.gsfc.nasa.gov/w3browse/all/batsegrb.html
C. A. Meegan, G. J. Fishman, R. B. Wilson, et al. Spatial distribution of γ-ray bursts observed by BATSE. Nature 355(6356):143–145, 1992. https://doi.org/10.1038/355143a0
D. B. Cline. The role of neutrinos, strings, gravity, and variable cosmological constant in elementary particle physics, chap. Primordial black holes and the asymmetrical distribution of short GRB events, pp. 157–168. Springer US, Boston, USA, 2001. https://doi.org/10.1007/0-306-47116-7_14
X. Chen, J. Hakkila. The two-point angular correlation function and BATSE sky exposure. AIP Conference Proceedings 428(1):149–153, 1998. https://doi.org/10.1063/1.55312
N. R. Tanvir, R. Chapman, A. J. Levan, R. S. Priddey. An origin in the local Universe for some short γ-ray bursts. Nature 438(7070):991–993, 2005. https://doi.org/10.1038/nature04310
I. Horváth, J. Hakkila, Z. Bagoly. Possible structure in the GRB sky distribution at redshift two. Astronomy and Astrophysics 561:L12, 2014. https://doi.org/10.1051/0004-6361/201323020
I. Horváth, Z. Bagoly, J. Hakkila, L. V. Tóth. New data support the existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics 584:A48, 2015. https://doi.org/10.1051/0004-6361/201424829
I. Horvath, D. Szécsi, J. Hakkila, et al. The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe? Monthly Notices of the Royal Astronomical Society 498(2):2544–2553, 2020. https://doi.org/10.1093/mnras/staa2460
L. G. Balázs, Z. Bagoly, J. E. Hakkila, et al. A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society 452(3):2236–2246, 2015. https://doi.org/10.1093/mnras/stv1421
L. G. Balázs, L. Rejtő, G. Tusnády. Some statistical remarks on the giant GRB ring. Monthly Notices of the Royal Astronomical Society 473(3):3169–3179, 2017. https://doi.org/10.1093/mnras/stx2550
Z. Bagoly, L. G. Balázs, I. Horváth, et al. The GRB’s sky exposure function. In Proceedings of Swift: 10 Years of Discovery – PoS(SWIFT 10), vol. 233, p. 60. 2015. https://doi.org/10.22323/1.233.0060
B. W. Silverman. Density estimation for statistics and data analysis. Chapman and Hall/CRC, 1986.
W. E. Schaap, R. van de Weygaert. Continuous fields and discrete samples: Reconstruction through Delaunay tessellations. Astronomy & Astrophysics 363:L29–L32, 2000. https://doi.org/10.48550/arXiv.astro-ph/0011007
A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations: Concepts and applications of Voronoi diagrams. Wiley Series in Probability and Statistics. Wiley, USA, 2nd edn., 2009.
M.-H. Li, H.-N. Lin. Testing the homogeneity of the Universe using gamma-ray bursts. Astronomy & Astrophysics 582:A111, 2015. https://doi.org/10.1051/0004-6361/201525736
T. N. Ukwatta, P. R. Woźniak, N. Gehrels. Machine-z: rapid machine-learned redshift indicator for Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society 458(4):3821–3829, 2016. https://doi.org/10.1093/mnras/stw559
A. J. S. Hamilton. Toward better ways to measure the galaxy correlation function. The Astrophysical Journal 417:19, 1993. https://doi.org/10.1086/173288
S. D. Landy, A. S. Szalay. Bias and variance of angular correlation functions. The Astrophysical Journal 412:64, 1993. https://doi.org/10.1086/172900
Downloads
Published
License
Copyright (c) 2025 Zsolt Bagoly

This work is licensed under a Creative Commons Attribution 4.0 International License.


