Review: the landscape of gravitational wave astronomy
DOI:
https://doi.org/10.14311/AP.2025.65.0079Keywords:
gravitational waves, black holes, neutron starsAbstract
The direct detection of gravitational waves from a binary black hole merger has opened a new window in observational astronomy. The first three observing runs of the LIGO/Virgo groundbased interferometers have produced a broad range of scientific results, including the first observations
of a binary neutron star merger and a neutron star-black hole merger. The observations include some exceptional events and other mergers reported in the GWTC-1, GWTC-2, GWTC-2.1, GWTC-3 catalogues, that have allowed tests of general relativity and studies of black hole and neutron star populations. The paper is a concise review of ground-based gravitational wave astronomy and related multi-messenger observations over the electromagnetic spectrum and the neutrino domain. Since the spectrum of gravitational waves extends over a broad frequency range, other techniques for gravitational wave detection outside the sensitivity band of ground-based interferometers will also be discussed.
Downloads
References
C. Moore, R. Cole, C. Berry. Gravitational wave sensitivity curve plotter, 2019. [2024-07-14]. http://gwplotter.com/
B. P. Abbott, R. Abbott, T. D. Abbott, et al. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116(6):061102, 2016. https://doi.org/10.1103/PhysRevLett.116.061102
S. Detweiler. Pulsar timing measurements and the search for gravitational waves. The Astrophysical Journal 234:1100–1104, 1979. https://doi.org/10.1086/157593
A. Sesana, A. Vecchio. Gravitational waves and pulsar timing: Stochastic background, individual sources and parameter estimation. Classical and Quantum Gravity 27(8):084016, 2010. https://doi.org/10.1088/0264-9381/27/8/084016
C. J. Moore, S. R. Taylor, J. R. Gair. Estimating the sensitivity of pulsar timing arrays. Classical and Quantum Gravity 32(5):055004, 2015. https://doi.org/10.1088/0264-9381/32/5/055004
B. P. Abbott, R. Abbott, T. D. Abbott, et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X 9(3):031040, 2019. https://doi.org/10.1103/PhysRevX.9.031040
B. P. Abbott, R. Abbott, T. D. Abbott, et al. Tests of general relativity with GW150914. Physical Review Letters 116(22):221101, 2016. [Erratum: Physical Review Letters 121(12):129902, 2018]. https://doi.org/10.1103/PhysRevLett.116.221101
B. P. Abbott, R. Abbott, T. D. Abbott, et al. Astrophysical implications of the binary black-hole merger GW150914. The Astrophysical Journal Letters 818(2):L22, 2016. https://doi.org/10.3847/2041-8205/818/2/L22
B. P. Abbott, R. Abbott, T. D. Abbott, et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119(16):161101, 2017. https://doi.org/10.1103/PhysRevLett.119.161101
B. P. Abbott, R. Abbott, T. D. Abbott, et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters 848(2):L13, 2017. https://doi.org/10.3847/2041-8213/aa920c
V. Savchenko, C. Ferrigno, E. Kuulkers, et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. The Astrophysical Journal Letters 848(2):L15, 2017. https://doi.org/10.3847/2041-8213/aa8f94
B. P. Abbott, R. Abbott, T. D. Abbott, et al. Multi-messenger observations of a binary neutron star merger. The Astrophysical Journal Letters 848(2):L12, 2017. https://doi.org/10.3847/2041-8213/aa91c9
D. A. Coulter, R. J. Foley, C. D. Kilpatrick, et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558, 2017. https://doi.org/10.1126/science.aap9811
D. A. H. Buckley, I. Andreoni, S. Barway, et al. A comparison between SALT/SAAO observations and kilonova models for AT 2017gfo: The first electromagnetic counterpart of a gravitational wave transient − GW170817. Monthly Notices of the Royal Astronomical Society: Letters 474(1):L71–L75, 2018. https://doi.org/10.1093/mnrasl/slx196
R. Chornock, E. Berger, D. Kasen, et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-South. The Astrophysical Journal Letters 848(2):L19, 2017. https://doi.org/10.3847/2041-8213/aa905c
P. S. Cowperthwaite, E. Berger, V. A. Villar, et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. The Astrophysical Journal Letters 848(2):L17, 2017. https://doi.org/10.3847/2041-8213/aa8fc7
M. R. Drout, A. L. Piro, B. J. Shappee, et al. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 358(6370):1570–1574, 2017. https://doi.org/10.1126/science.aaq0049
D. Kasen, B. Metzger, J. Barnes, et al. Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event. Nature 551(7678):80–84, 2017. https://doi.org/10.1038/nature24453
M. M. Kasliwal, E. Nakar, L. P. Singer, et al. Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358(6370):1559–1565, 2017. https://doi.org/10.1126/science.aap9455
M. M. Kasliwal, D. Kasen, R. M. Lau, et al. Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Monthly Notices of the Royal Astronomical Society: Letters 510(1):L7–L12, 2022. https://doi.org/10.1093/mnrasl/slz007
C. D. Kilpatrick, R. J. Foley, D. Kasen, et al. Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science 358(6370):1583–1587, 2017. https://doi.org/10.1126/science.aaq0073
A. J. Levan, J. D. Lyman, N. R. Tanvir, et al. The environment of the binary neutron star merger GW170817. The Astrophysical Journal Letters 848(2):L28, 2017. https://doi.org/10.3847/2041-8213/aa905f
C. McCully, D. Hiramatsu, D. A. Howell, et al. The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. The Astrophysical Journal Letters 848(2):L32, 2017. https://doi.org/10.3847/2041-8213/aa9111
M. Nicholl, E. Berger, D. Kasen, et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. III. Optical and UV spectra of a blue kilonova from fast polar ejecta. The Astrophysical Journal Letters 848(2):L18, 2017. https://doi.org/10.3847/2041-8213/aa9029
E. Pian, P. D’Avanzo, S. Benetti, et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger. Nature 551(7678):67–70, 2017. https://doi.org/10.1038/nature24298
B. J. Shappee, J. D. Simon, M. R. Drout, et al. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science 358(6370):1574–1578, 2017. https://doi.org/10.1126/science.aaq0186
S. J. Smartt, T.-W. Chen, A. Jerkstrand, et al. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79, 2017. https://doi.org/10.1038/nature24303
N. R. Tanvir, A. J. Levan, C. González-Fernández, et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. The Astrophysical Journal Letters 848(2):L27, 2017. https://doi.org/10.3847/2041-8213/aa90b6
V. A. Villar, P. S. Cowperthwaite, E. Berger, et al. Spitzer space telescope infrared observations of the binary neutron star merger GW170817. The Astrophysical Journal Letters 862(1):L11, 2018. https://doi.org/10.3847/2041-8213/aad281
B. Paczynski. Gamma-ray bursters at cosmological distances. Astrophysical Journal 308:L43–L46, 1986. https://doi.org/10.1086/184740
D. Eichler, M. Livio, T. Piran, D. N. Schramm. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340(6229):126–128, 1989. https://doi.org/10.1038/340126a0
B. Paczynski. Cosmological gamma-ray bursts. Acta Astronomica 41:257–267, 1991.
L.-X. Li, B. Paczynski. Transient events from neutron star mergers. The Astrophysical Journal 507(1):L59, 1998. https://doi.org/10.1086/311680
S. R. Kulkarni. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. arXiv 2005. https://doi.org/10.48550/arXiv.astro-ph/0510256
E. Nakar. Short-hard gamma-ray bursts. Physics Reports 442(1–6):166–236, 2007. https://doi.org/10.1016/j.physrep.2007.02.005
J. Barnes, D. Kasen. Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. The Astrophysical Journal 775(1):18, 2013. https://doi.org/10.1088/0004-637X/775/1/18
E. Berger. Short-duration gamma-ray bursts. Annual Review of Astronomy and Astrophysics 52:43–105, 2014. https://doi.org/10.1146/annurev-astro-081913-035926
N. R. Tanvir, A. J. Levan, A. S. Fruchter, et al. A ”kilonova” associated with short-duration γ-ray burst 130603B. Nature 500(7464):547–549, 2013. https://doi.org/10.1038/nature12505
P. D’Avanzo. Short gamma-ray bursts: A review. Journal of High Energy Astrophysics 7:73–80, 2015. https://doi.org/10.1016/j.jheap.2015.07.002
B. D. Metzger. Kilonovae. Living Reviews in Relativity 23(1):1, 2020. https://doi.org/10.1007/s41114-019-0024-0
P. A. Evans, , S. B. Cenko, et al. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova. Science 358(6370):1565–1570, 2017. https://doi.org/10.1126/science.aap9580
D. Haggard, M. Nynka, J. J. Ruan, et al. A deep Chandra X-ray study of neutron star coalescence GW170817. The Astrophysical Journal Letters 848(2):L25, 2017. https://doi.org/10.3847/2041-8213/aa8ede
R. Margutti, E. Berger, W. Fong, et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. V. Rising X-ray emission from an off-axis jet. The Astrophysical Journal Letters 848(2):L20, 2017. https://doi.org/10.3847/2041-8213/aa9057
S. Sugita, N. Kawai, S. Nakahira, et al. MAXI upper limits of the electromagnetic counterpart of GW170817. Publications of the Astronomical Society of Japan 70(4):81, 2018. https://doi.org/10.1093/pasj/psy076
E. Troja, L. Piro, H. van Eerten, et al. The X-ray counterpart to the gravitational wave event GW 170817. Nature 551(7678):71–74, 2017. https://doi.org/10.1038/nature24290
G. Hallinan, A. Corsi, K. P. Mooley, et al. A radio counterpart to a neutron star merger. Science 358(6370):1579–1583, 2017. https://doi.org/10.1126/science.aap9855
J. D. Lyman, G. P. Lamb, A. J. Levan, et al. The optical afterglow of the short gamma-ray burst associated with GW170817. Nature Astronomy 2(9):751–754, 2018. https://doi.org/10.1038/s41550-018-0511-3
S. Makhathini, K. P. Mooley, M. Brightman, et al. The panchromatic afterglow of GW170817: The full uniform data set, modeling, comparison with previous results, and implications. The Astrophysical Journal 922(2):154, 021. https://doi.org/10.3847/1538-4357/ac1ffc
K. P. Mooley. GW170817 panchromatic afterglow. [2024-07-14]. http://www.tauceti.caltech.edu/kunal/gw170817/
B. F. Schutz. Determining the Hubble constant from gravitational wave observations. Nature 323(6086):310–311, 1986. https://doi.org/10.1038/323310a0
B. P. Abbott, R. Abbott, T. D. Abbott, et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88, 2017. https://doi.org/10.1038/nature24471
N. Aghanim, Y. Akrami, M. Ashdown, et al. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics 641:A6, 2020. [Erratum: Astronomy & Astrophysics 652:C4, 2021]. https://doi.org/10.1051/0004-6361/201833910
A. G. Riess, W. Yuan, L. M. Macri, et al. A comprehensive measurement of the local value of the Hubble constant with 1kms−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. The Astrophysical Journal Letters 934(1):L7, 2022. https://doi.org/10.3847/2041-8213/ac5c5b
R. Abbott, T. D. Abbott, F. Acernese, et al. GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. Physical Review X 13(4):041039, 2023. https://doi.org/10.1103/PhysRevX.13.041039
R. Abbott, T. D. Abbott, S. Abraham, et al. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D 102(4):043015, 2020. https://doi.org/10.1103/PhysRevD.102.043015
R. Abbott, T. D. Abbott, F. Acernese, et al. GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review D 109(2):022001, 2024. https://doi.org/10.1103/PhysRevD.109.022001
K. S. Thorne. Multipole expansions of gravitational radiation. Reviews of Modern Physics 52(2):299–339, 1980. https://doi.org/10.1103/RevModPhys.52.299
B. P. Abbott, R. Abbott, T. D. Abbott, et al. GW190425: Observation of a compact binary coalescence with total mass ∼ 3.4M⊙. The Astrophysical Journal Letters 892(1):L3, 2020. https://doi.org/10.3847/2041-8213/ab75f5
N. Farrow, X.-J. Zhu, E. Thrane. The mass distribution of Galactic double neutron stars. The Astrophysical Journal 876(1):18, 2019. https://doi.org/10.3847/1538-4357/ab12e3
A. S. Pozanenko, P. Y. Minaev, S. A. Grebenev, I. V. Chelovekov. Observation of the second LIGO/Virgo event connected with a binary neutron star merger S190425z in the gamma-ray range. Astronomy Letters 45(11):710–727, 2019. https://doi.org/10.1134/S1063773719110057
C. Fletcher, et al. GCN circular 24185, 2019.
R. Abbott, T. D. Abbott, S. Abraham, et al. GW190521: A Binary black hole merger with a total mass of 150M⊙. Physical Review Letters 125(10):101102, 2020. https://doi.org/10.1103/PhysRevLett.125.101102
J. E. Greene, J. Strader, L. C. Ho. Intermediate-mass black holes. Annual Review of Astronomy and Astrophysics 58:257–312, 2020. https://doi.org/10.1146/annurev-astro-032620-021835
S. E. Woosley. Pulsational pair-instability supernovae. The Astrophysical Journal 836(2):244, 2017. https://doi.org/10.3847/1538-4357/836/2/244
H. Tagawa, Z. Haiman, B. Kocsis. Formation and evolution of compact object binaries in AGN disks. The Astrophysical Journal 898(1):25, 2020. https://doi.org/10.3847/1538-4357/ab9b8c
Y. Yang, I. Bartos, V. Gayathri, et al. Hierarchical black hole mergers in active galactic nuclei. Physical Review Letters 123(18):181101, 2019. https://doi.org/10.1103/PhysRevLett.123.181101
J. Samsing, I. Bartos, D. J. D’Orazio, et al. AGN as potential factories for eccentric black hole mergers. Nature 603(7900):237–240, 2022. https://doi.org/10.1038/s41586-021-04333-1
V. Gayathri, J. Healy, J. Lange, et al. Eccentricity estimate for black hole mergers with numerical relativity siations. Nature Astronomy 6(3):344–349, 2022. https://doi.org/10.1038/s41550-021-01568-w
I. Romero-Shaw, P. D. Lasky, E. Thrane, J. C. Bustillo. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. The Astrophysical Journal Letters 903(1):L5, 2020. https://doi.org/10.3847/2041-8213/abbe26
R. Gamba, M. Breschi, G. Carullo, et al. GW190521 as a dynamical capture of two nonspinning black holes. Nature Astronomy 7(1):11–17, 2023. https://doi.org/10.1038/s41550-022-01813-w
H. L. Iglesias, J. Lange, I. Bartos, et al. Eccentricity estimation for five binary black hole mergers with higher-order gravitational wave modes. The Astrophysical Journal 972(1):65, 2024. https://doi.org/10.3847/1538-4357/ad5ff6
C. D. Capano, M. Cabero, J. Westerweck, et al. A multimode quasi-normal spectrum from a perturbed black hole. Physical Review Letters 131(22):221402, 2023. https://doi.org/10.1103/PhysRevLett.131.221402
M. J. Graham, K. E. S. Ford, B. McKernan, et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational wave event S190521g. Physical Review Letters 124(25):251102, 2020. https://doi.org/10.1103/PhysRevLett.124.251102
I. Bartos, D. Veske, A. Keivani, et al. Bayesian multimessenger search method for common sources of gravitational waves and high-energy neutrinos. Physical Review D 100(8):083017, 2019. https://doi.org/10.1103/PhysRevD.100.083017
B. McKernan, K. E. S. Ford, I. Bartos, et al. Ram-pressure stripping of a kicked Hill sphere: Prompt electromagnetic emission from the merger of stellar mass black holes in an AGN accretion disk. The Astrophysical Journal Letters 884(2):L50, 2019. https://doi.org/10.3847/2041-8213/ab4886
G. Ashton, K. Ackley, I. M. Hernandez, B. Piotrzkowski. Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929. Classical and Quantum Gravity 38(23):235004, 2021. https://doi.org/10.1088/1361-6382/ac33bb
F. De Paolis, A. A. Nucita, F. Strafella, et al. A quasar microlensing event towards J1249+3449? Monthly Notices of the Royal Astronomical Society: Letters 499(1):L87–L90, 2020. https://doi.org/10.1093/mnrasl/slaa140
A. Palmese, M. Fishbach, C. J. Burke, et al. Do LIGO/Virgo black hole mergers produce AGN flares? The case of GW190521 and prospects for reaching a confident association. The Astrophysical Journal Letters 914(2):L34, 2021. https://doi.org/10.3847/2041-8213/ac0883
R. Abbott, T. D. Abbott, S. Abraham, et al. GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. The Astrophysical Journal Letters 896(2):L44, 2020. https://doi.org/10.3847/2041-8213/ab960f
R. W. Romani, D. Kandel, A. V. Filippenko, et al. PSR J0952–0607: The fastest and heaviest known galactic neutron star. The Astrophysical Journal Letters 934(2):L17, 2022. https://doi.org/10.3847/2041-8213/ac8007
H. Müller, B. D. Serot. Relativistic mean field theory and the high density nuclear equation of state. Nuclear Physics A 606(3–4):508–537, 1996. https://doi.org/10.1016/0375-9474(96)00187-X
I. Tews, A. Schwenk. Spin-polarized neutron matter, the maximum mass of neutron stars, and GW170817. The Astrophysical Journal 892(1):14, 2020. https://doi.org/10.3847/1538-4357/ab7232
Z. Roupas. Secondary component of gravitational-wave signal GW190814 as an anisotropic neutron star. Astrophysics and Space Science 366(1):9, 2021. https://doi.org/10.1007/s10509-021-03919-5
R. Abbott, T. D. Abbott, S. Abraham, et al. Observation of gravitational waves from two neutron star–black hole coalescences. The Astrophysical Journal Letters 915(1):L5, 2021. https://doi.org/10.3847/2041-8213/ac082e
R. Abbott, T. D. Abbott, S. Abraham, et al. GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review X 11(2):021053, 2021. https://doi.org/10.1103/PhysRevX.11.021053
W. M. Farr, J. R. Gair, I. Mandel, C. Cutler. Counting and confusion: Bayesian rate estimation with multiple populations. Physical Review D 91(2):023005, 2015. https://doi.org/10.1103/PhysRevD.91.023005
S. J. Kapadia, S. Caudill, J. D. E. Creighton, et al. A self-consistent method to estimate the rate of compact binary coalescences with a Poisson mixture model. Classical and Quantum Gravity 37(4):045007, 2020. https://doi.org/10.1088/1361-6382/ab5f2d
LVK Collaboration. LIGO document G2102395-v1. LIGO-Virgo-KAGRA cumulative detection plot. [2024-07-14]. https://dcc.ligo.org/LIGO-G2102395/public
R. Abbott, H. Abe, F. Acernese, et al. Tests of general relativity with GWTC-3. arXiv 2021. https://doi.org/10.48550/arXiv.2112.06861
R. Abbott, T. D. Abbott, F. Acernese, et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Physical Review X 13(1):011048, 2023. https://doi.org/10.1103/PhysRevX.13.011048
D. F. Chernoff, L. S. Finn. Gravitational radiation, inspiraling binaries, and cosmology. The Astrophysical Journal Letters 411:L5–L8, 1993. https://doi.org/10.1086/186898
X. Ding, M. Biesiada, X. Zheng, et al. Cosmological inference from standard sirens without redshift measurements. Journal of Cosmology and Astroparticle Physics 2019(04):033, 2019. https://doi.org/10.1088/1475-7516/2019/04/033
M. Oguri. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies. Physical Review D 93(8):083511, 2016. https://doi.org/10.1103/PhysRevD.93.083511
R. Abbott, H. Abe, F. Acernese, et al. Constraints on the cosmic expansion history from GWTC–3. The Astrophysical Journal 949(2):76, 2023. https://doi.org/10.3847/1538-4357/ac74bb
S. Mastrogiovanni, K. Leyde, C. Karathanasis, et al. On the importance of source population models for gravitational-wave cosmology. Physical Review D 104(6):062009, 2021. https://doi.org/10.1103/PhysRevD.104.062009
R. Gray, I. M. Hernandez, H. Qi, et al. Cosmological inference using gravitational wave standard sirens: A mock data analysis. Physical Review D 101(12):122001, 2020. https://doi.org/10.1103/PhysRevD.101.122001
G. Dálya, R. Díaz, F. R. Bouchet, et al. GLADE+: An extended galaxy catalogue for multimessenger searches with advanced gravitational-wave detectors. arXiv 2021. https://doi.org/10.48550/arXiv.2110.06184
Cosmic Explorer Project. Astrophysical sensitivity, 2023. [2024-07-14]. https://cosmicexplorer.org/sensitivity.html
KAGRA collaboration. KAGRA: 2.5 generation interferometric gravitational wave detector. Nature Astronomy 3(1):35–40, 2019. https://doi.org/10.1038/s41550-018-0658-y
R. X. Adhikari, K. Arai, A. F. Brooks, et al. A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity 37(16):165003, 2020. https://doi.org/10.1088/1361-6382/ab9143
K. Ackley, V. B. Adya, P. Agrawal, et al. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia 37:e047, 2020. https://doi.org/10.1017/pasa.2020.39
F. Acernese, S. Aoudia, P. Amaro-Seoane et al. (ET Science Team). Einstein gravitational wave telescope conceptual design study. Tech. Rep. ET-0106C-10, Einstein Telescope, 2011.
D. Reitze, R. X. Adhikari, S. Ballmer, et al. Cosmic Explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bulletin of the American Astronomical Society 51(7):035, 2019.
LISA study team. LISA pre-phase a report. 2nd edition. Tech. rep., Max-Planck-Institut für Quantenoptik, Garching, 1998.
P. Amaro-Seoane, S. Aoudia, S. Babak, et al. Lowfrequency gravitational-wave science with eLISA/NGO. Classical and Quantum Gravity 29(12):124016, 2012. https://doi.org/10.1088/0264-9381/29/12/124016
P. Amaro-Seoane, H. Audley, S. Babak, et al. Laser interferometer space antenna. arXiv 2017. https://doi.org/10.48550/arXiv.1702.00786
M. Tinto, S. V. Dhurandhar. Time-delay interferometry. Living Reviews in Relativity 24(1):1, 2021. https://doi.org/10.1007/s41114-020-00029-6
F. Antonucci, M. Armano, H. Audley, et al. The LISA Pathfinder mission. Classical and Quantum Gravity 29(12):124014, 2012. https://doi.org/10.1088/0264-9381/29/12/124014
M. Armano, H. Audley, G. Auger, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results. Physical Review Letters 116(23):231101, 2016. https://doi.org/10.1103/PhysRevLett.116.231101
M. Armano, H. Audley, J. Baird, et al. Beyond the Required LISA free-fall performance: New LISA Pathfinder results down to 20 μHz. Physical Review Letters 120(6):061101, 2018. https://doi.org/10.1103/PhysRevLett.120.061101
W.-R. Hu, Y.-L. Wu. The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686, 2017. https://doi.org/10.1093/nsr/nwx116
J. Luo, L.-S. Chen, H.-Z. Duan, et al. TianQin: A space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010, 2016. https://doi.org/10.1088/0264-9381/33/3/035010
N. Seto, S. Kawamura, T. Nakamura. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. Physical Review Letters 87(22):221103, 2001. https://doi.org/10.1103/PhysRevLett.87.221103
S. Kawamura, M. Ando, N. Seto, et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics 2021(5):05A105, 2021. https://doi.org/10.1093/ptep/ptab019
J. Ellis, V. Vaskonen. Probes of gravitational waves with atom interferometers. Physical Review D 101(12):124013, 2020. https://doi.org/10.1103/PhysRevD.101.124013
L. Badurina, O. Buchmueller, J. Ellis, et al. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter. Philosophical Transactions of the Royal Society A 380(2216):20210060, 2021. https://doi.org/10.1098/rsta.2021.0060
M. Abe, P. Adamson, M. Borcean, et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Quantum Sci Technol 6(4):044003, 2021. https://doi.org/10.1088/2058-9565/abf719
L. Badurina, E. Bentine, D. Blas, et al. AION: An atom interferometer observatory and network. Journal of Cosmology and Astroparticle Physics 2020(05):011, 2020. https://doi.org/10.1088/1475-7516/2020/05/011
B. Canuel, A. Bertoldi, L. Amand, et al. Exploring gravity with the MIGA large scale atom interferometer. Scientific Reports 8(1):14064, 2018. https://doi.org/10.1038/s41598-018-32165-z
B. Canuel, S. Abend, P. Amaro-Seoane, et al. ELGAR – A European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity 37(22):225017, 2020. https://doi.org/10.1088/1361-6382/aba80e
M.-S. Zhan, J. Wang, W.-T. Ni, et al. ZAIGA: Zhaoshan long-baseline Atom Interferometer Gravitation Antenna. International Journal of Modern Physics D 29(04):1940005, 2020. https://doi.org/10.1142/S0218271819400054
Y. A. El-Neaj, C. Alpigiani, S. Amairi-Pyka, et al. AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in space. EPJ Quantum Technology 7(1):6, 2020. https://doi.org/10.1140/epjqt/s40507-020-0080-0
R. S. Foster, D. C. Backer. Constructing a pulsar timing array. The Astrophysical Journal 361:300–308, 1990. https://doi.org/10.1086/169195
R. W. Hellings, G. S. Downs. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. The Astrophysical Journal 265:L39–L42, 1983. https://doi.org/10.1086/183954
S. Burke-Spolaor, S. R. Taylor, M. Charisi, et al. The astrophysics of nanohertz gravitational waves. The Astronomy and Astrophysics Review 27(1):5, 2019. https://doi.org/10.1007/s00159-019-0115-7
G. Agazie, A. Anumarlapudi, A. M. Archibald, et al. The NANOGrav 15 yr data set: Evidence for a gravitational-wave background. The Astrophysical Journal Letters 951(1):L8, 2023. https://doi.org/10.3847/2041-8213/acdac6
J. Antoniadis, P. Arumugam, S. Arumugam, et al. The second data release from the European Pulsar Timing Array – III. Search for gravitational wave signals. Astronomy & Astrophysics 678:A50, 2023. https://doi.org/10.1051/0004-6361/202346844
D. J. Reardon, A. Zic, R. M. Shannon, et al. Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array. The Astrophysical Journal Letters 951(1):L6, 2023. https://doi.org/10.3847/2041-8213/acdd02
Downloads
Published
License
Copyright (c) 2025 Rosa Poggiani

This work is licensed under a Creative Commons Attribution 4.0 International License.


