3U CubeSat mechanical design and subsystems

Authors

  • Mohammad Suhel Karkun Julius-Maximilians-Universität Würzburg, Faculty of Mathematics and Computer Science, Institute of Computer Science, Chair of Computer Science VIII – Aerospace Information Technology, Emil-Fischer-Strasse 70, 97070 Würzburg, Germany https://orcid.org/0000-0002-7404-1062

DOI:

https://doi.org/10.14311/AP.2025.65.0040

Keywords:

3U CubeSats, small satellites, mechanical design, mechanical subsystems, electronic subsystems

Abstract

In this paper, an in-depth analysis of the mechanical design and integration of the 3U CubeSat subsystems is presented, a common form factor in the small satellite community. The study summarises recent research and emphasises developments in material selection, structural integrity, thermal management, and computer-aided design (CAD) techniques. In addition, it explores the integration of crucial subsystems, such as power, communication, and payloads, highlighting the challenges and solutions encountered. This paper aims to provide a comprehensive understanding of the state-of-the-art 3U CubeSat mechanical design and subsystem integration by compiling and evaluating current developments. The insights offered here are essential for researchers and engineers, laying the groundwork for further advancements in CubeSat technology.

Downloads

Download data is not yet available.

References

H. Heidt, J. Puig-suari, S. Moore, et al. CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. In 14th Annual/USU Conference on Small Satellites, pp. 1–19. 2000.

J. Puig-Suari, C. Turner, W. Ahlgren. Development of the standard CubeSat deployer and a CubeSat class picosatellite. 2001 IEEE Aerospace Conference Proceedings 1(1):347–353, 2001. https://doi.org/10.1109/AERO.2001.931726

M. A. Swartwout. The first one hundred CubeSats: A statistical look. Journal of Small Satellites 2(2):213–233, 2013.

J. Bouwmeester, J. Guo. Survey of worldwide picoand nanosatellite missions, distributions and subsystem technology. Acta Astronautica 67(7–8):854–862, 2010. https://doi.org/10.1016/j.actaastro.2010.06.004

E. Gill, P. Sundaramoorthy, J. Bouwmeester, et al. Formation flying within a constellation of nano-satellites: The QB50 mission. Acta Astronautica 82(1):110–117, 2013. https://doi.org/10.1016/j.actaastro.2012.04.029

E. Dale, B. Jorns, A. Gallimore. Future directions for electric propulsion research. Aerospace 7(9):120, 2020. https://doi.org/10.3390/aerospace7090120

A. Klesh, B. Clement, C. Colley, et al. MarCO: Early operations of the first CubeSats to Mars. In 32nd Annual AIAA/USU Conference on Small Satellites, pp. 1–6. 2018. [2025-02-25]. https://digitalcommons.usu.edu/smallsat/2018/all2018/474/

Zentrum für Telematik. NetSat – Pioneering research in formation control, 2020. [2024-07-15]. https://www.telematik-zentrum.de/en/projects/netsat/

N. Bennett, A. Hawchar, A. Cowley. Thermal control of CubeSat electronics using thermoelectrics. Applied Sciences 13(11):6480, 2023. https://doi.org/10.3390/app13116480

eoPortal. Dove-1 and Dove-2 nanosatellites, 2013. [2024-07-15]. https://www.eoportal.org/satellitemissions/dove#eop-quick-facts-section

R. De, M. P. Abegaonkar, A. Basu. Enabling science with CubeSats – Trends and prospects. IEEE Journal on Miniaturization for Air and Space Systems 3(4):221–231, 2022. https://doi.org/10.1109/JMASS.2022.3209897

CalPoly. CubeSat design specification (CDS) (1U–12U) Rev. 14.1, 2022. [2024-07-15]. https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf

C. E. Tuck. NASA to demonstrate miniature CubeSat swarm technology, 2024. [2024-07-15]. https://www.nasa.gov/directorates/stmd/smallspacecraft-technology-program/nasa-todemonstrate-miniature-cubesat-swarmtechnology/

J. Schoolcraft, A. Klesh, T. Werne. Space operations: Contributions from the global community, chap. MarCO: Interplanetary mission development on a CubeSat scale, pp. 221–231. 2017. https://doi.org/10.1007/978-3-319-51941-8_10

B. M. M. Bomani. NASA/TP-20210000201. CubeSat technology past and present: Current state-of-the-art survey. Tech. rep., NASA, Glenn Research Center, Cleveland, Ohio, USA, 2021.

Julius-Maximilians-Universität Würzburg, Fakultät für Mathematik und Informatik, Institut für Informatik. UWE-4, 2018. [2024-07-15]. https://www.informatik.uni-wuerzburg.de/space/forschung/space-exploration/projects/uwe-4/

ISISPACE. ISIPOD CubeSat deployer, 2013. [2025-02-25]. https://www.isispace.nl/wp-content/uploads/2016/02/ISIS-CubeSat-Deployers-Brochure-v1.pdf

Downloads

Published

2025-03-06

How to Cite

Karkun, M. S. (2025). 3U CubeSat mechanical design and subsystems. Acta Polytechnica, 65(1), 40-49. https://doi.org/10.14311/AP.2025.65.0040