Use of Contactless Spatial Data Collection Methods for Snow Cover Monitoring: Case Studies from Czech Mountains

Authors

  • Jan Pacina J. E. Purkyne University in Usti nad Labem
  • Ondřej Soukup J. E. Purkyne University in Usti nad Labem
  • Dominik Brétt J. E. Purkyne University in Usti nad Labem
  • Petr Novák J. E. Purkyne University in Usti nad Labem
  • Jan Popelka J. E. Purkyne University in Usti nad Labem

DOI:

https://doi.org/10.14311/CEJ.2025.02.0014

Keywords:

UAV LiDAR, Snow cover, GNSS RTK, Point cloud processing, Bare ground filtering, Mountain environments

Abstract

Accurate documentation of snow cover is critical for hydrological modeling, climate adaptation planning, and risk assessment in mountainous regions. This study presents a comprehensive methodology for snow cover monitoring using UAV-based LiDAR scanning, tailored to the specific environmental and technical constraints of Central European mountain ranges. Field campaigns were conducted across several Czech border mountain locations (Ore Mountains, Giant Mountains, Beskids Mountains), utilizing DJI Matrice 300 RTK equipped with Zenmuse L1 or L2 LiDAR sensors. Due to limitations in deploying traditional ground control points (GCPs) in remote and protected areas, the methodology emphasizes reliance on GNSS RTK corrections and minimal GCP use. The influence of two GNSS reference networks (CZEPOS and TopNet) was evaluated through photogrammetric analysis, revealing systematic elevation biases and spatial autocorrelation, with TopNet yielding slightly better results.

Various point cloud post-processing workflows were tested, including smoothing and noise filtering in DJI Terra, TerraSolid, and CloudCompare. The best visual and statistical results were obtained using a combined approach supplemented by a single foldable GCP. Ground point classification methods were assessed in both snow-free and snow-covered conditions. The most reliable method for snow-free filtering was the Spatix-based algorithm in TerraSolid, while snow-covered scenes required custom multi-criteria filtering in CloudCompare.

Validation was performed using over 4,500 RTK GNSS ground points and manual snow probe measurements. The methodology proved robust despite uncertainties from vegetation interference and manual measurement limits. This study delivers practical guidelines for operational snow cover documentation under constrained field conditions, and proposes improvements for future automation and validation.

 

Downloads

Download data is not yet available.

References

Lizama, E., Somos-Valenzuela, M., Rivera, D., Lillo, M., Morales, B., Baraër, M., & Fernández, A. (2024). Role of mountain glaciers in the hydrological dynamics of headwater basins in the Wet Andes. Journal of Hydrology, 132413. doi:10.1016/j.jhydrol.2024.132413

Sunita, N., Gupta, P. K., Gusain, H. S., Gill, A. S., & Sidhu, O. S. (2024). Snow Cover Variability in the Beas River Basin and its relation with climate parameters during 2007-2018. IOP Conference Series Earth and Environmental Science, 1326(1), 012147. doi:10.1088/1755-1315/1326/1/012147

Schilling, S., Dietz, A., & Kuenzer, C. (2024). Snow Water Equivalent Monitoring—A Review of Large-Scale Remote Sensing Applications. Remote Sensing, 16(6), 1085. doi:10.3390/rs16061085

Jenicek, M., & Ledvinka, O. (2020). Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia. Hydrology and Earth System Sciences, 24(7), 3475–3491.

Slatyer, R. A., Umbers, K. D. L., & Arnold, P. A. (2024). Ecological responses to variation in seasonal snow cover. Conservation Biology, 38(2), e13727. doi:10.1111/cobl.13727

Taheri, M., & Mohammadian, A. (2022). An Overview of Snow Water Equivalent: Methods, Challenges, and Future Outlook. Sustainability, 14(18). https://www.mdpi.com/2071-1050/14/18/11395

Zha, H., Zhang, F., Tang, S., Zhang, L., & Luo, L. (2025). Unraveling the Distinct Roles of Snowmelt and Glacier-Melt on Agricultural Water Availability. AGU, 61(1). doi:10.1029/2023WR036898

Poschlod, B., & Daloz, A. S. (2024). Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research? European Geosciences Union, 18(4). doi:10.5194/tc-18-1959-2024

Wieder, W. R., Kennedy, D., Lehner, F., & Yamaguchi, R. (2022). Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the National Academy of Sciences, 119(30). doi:10.1073/pnas.2202393119

Lute, A. C., Abatzoglou, J., & Link, T. (2022). High-resolution snow model SnowClim: Dataset and applications for climate adaptation. Geoscientific Model Development, 15(13), 5045-5071. doi:10.5194/gmd-15-5045-2022

Mitterwallner, V., Steinbauer, M., Mathes, G., & Walentowitz, A. (2024). Global reduction of snow cover in ski areas under climate change. PLOS ONE, 19(3). doi:10.1371/journal.pone.0299735

Vionnet, V., Martin, E., Masson, V., Guyomarc'h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., & Lac, C. (2014). Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model. The Cryosphere, 8(2). doi:10.5194/tc-8-395-2014

Nousu, J. -P., Lafaysse, M., Mazzotti, G., Ala-aho, P., & Marttila, H. (2024). Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests. The Cryosphere, 18(1), 231–256. https://tc.copernicus.org/articles/18/231/2024/

Abe, T., Iwasawa, S., Murakami, T., Ito, K., & Tomonori, U. (2019). Safety measures against snow and ice for safe and secure expressways. doi:10.1016/j.rse.2021.112345

Soomro, S. -e-hyder, Soomro, A. R., Batool, S., & Guo, J. (2024). How does the climate change effect on hydropower potential, freshwater fisheries, and hydrological response of snow on water availability?, 14(65). doi:10.1007/s13201-023-02070-6

Mott, R., Vionnet, V., & Grünewald, T. (2018). The Seasonal Snow Cover Dynamics: Review on Wind-Driven Coupling Processes. Cryospheric Sciences, 197(6). doi:10.3389/feart.2018.00197

Proulx, H., Jacobs, J. M., & Burakowski, E. A. (2023). Brief communication: Comparison of in situ ephemeral snow depth measurements over a mixed-use temperate forest landscape. The Cryosphere, 17(8), 3435-3442. doi:10.5194/tc-17-3435-2023

Mendoza, P. A., Musselman, K. N., & Revuelto, J. (2020). Interannual and Seasonal Variability of Snow Depth Scaling Behavior in a Subalpine Catchment. Advancing earth and space sciences, 56(7). doi:10.1029/2020WR027343

Herla, F., Horton, S., Mair, P., & Haegeli, P. (2021). Snow profile alignment and similarity assessment for aggregating, clustering, and evaluating snowpack model output for avalanche forecasting. European Geosciences Union, 14(1), 239–258. doi:10.5194/gmd-14-239-2021

Ryan, W. A., Doesken, N. J., & Fassnacht, S. R. (2008). Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow Measurements. Journal of Atmospheric and Oceanic Technology, 9(4), 1005–1015. doi:10.1175/2007JTECHA947.1

Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013). Lidar measurement of snow depth. Journal of Glaciology, 59(215), 467-479. doi:10.3189/2013JoG12J154

Buchelt, S., Skov, K., Rasmussen, K. K., & Ullmann, T. (2022). Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland. The Cryosphere, 2022(16), 625-646. doi:10.5194/tc-16-625-2022

Postup testování přesnosti služeb a produktů CZEPOS. [Procedure for testing the accuracy of CZEPOS services and products] Czepos. Retrieved May 5, 2025, from https://czepos.cuzk.gov.cz/_postup.aspx

GNSS positioning correction service. (2015). TopCon Positioning. Retrieved May 5, 2025, from https://www.topconpositioning.com/solutions/technology/infrastructure-software-and-services/topnet-live-corrections

Gumilar, I., Bramanto, B., & Rahman, F. F. (2019). Variability and Performance of Short to Long-Range Single Baseline RTK GNSS Positioning in Indonesia. E3S Web of Conferences, 94(01012). doi:10.1051/e3sconf/20199401012

Atiz, O. F., Konukseven, C., Ogutcu, S., & Alcay, S. (2022). Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences, 2022(7), 67-80.

Understanding RTK Accuracy and Its Dependence on Distance from the Base Station. Online. Point One Navigation. Dostupné z: https://support.pointonenav.com/understanding-rtk-accuracy-and-its-dependence-on-distance-from-the-base-station.

BAYBURA, Tamer; TIRYAKIOĞLU, İbrahim a UĞUR, Mehmet Ali. Examining the Accuracy of Network RTK and Long Base RTK Methods with Repetitive Measurements. Journal of Sensors. 2019, roč. 2019.

Ground Control Points- Tutorial. Online. Inflights. Dostupné z: https://help.inflights.com/en/articles/6495854-ground-control-points-tutorial.

DJI Terra Release Notes. 4.5.0. 2025. Available from: https://terra-1-g.djicdn.com/263b7ee0f1fe477c91b7ca44348166fe/releasenotes/DJI%20Terra%20Release%20Notes.pdf.

Martínez-Carricondo, P., Agüera-Vega, F., & Carvajal-Ramírez, F. (2023). Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations. Geocarto International, 38(1). doi:10.1080/10106049.2023.2197507

Pacina, J., Cajthaml, J., Kratochvílová, D., Popelka, J., Dvořák, V. & Janata, T. (2022). Pre‐dam valley reconstruction based on archival spatial data sources: Methods, accuracy, and 3D printing possibilities. Transactions in GIS. 26(1), 385-420. ISSN 1361-1682. doi:10.1111/tgis.12854

Schaefer, M. & PEARSON, A. (2021). Accuracy and precision of GNSS in the field. GPS and GNSS Technology in Geosciences. Vol. 2021, no. 19, pp. 393-414. doi:10.1016/B978-0-12-818617-6.00002-0

Published

2025-07-31

Issue

Section

Articles

How to Cite

Use of Contactless Spatial Data Collection Methods for Snow Cover Monitoring: Case Studies from Czech Mountains. (2025). Stavební Obzor - Civil Engineering Journal, 34(2), 196-212. https://doi.org/10.14311/CEJ.2025.02.0014