The Blast furnace slag properties at different grinding times and its effect on foam concrete properties


  • Dien Vu Kim constructional and industrial college
  • Sofya Ildarovna Bazhenova
  • Trong Chuc Nguyen
  • Van Lam Tang
  • Minh Chien Do
  • Van Loi Le
  • Van Duong Nguyen
  • Cong Ly Nguyen
  • Minh Thuan Hoang



Blast furnace slag, Mechanical properties, Mixtures, Concrete, Mechanical grinding


The paper presents the blast furnace slag properties at different grinding times by the dry grinding method. The process of fine grinding blast furnace slag is prepared at different times (10 minutes, 20 minutes, 30 minutes, 40 minutes). The results indicated that the main component in BFS is the amorphous structure defined in about 25÷35 degrees (with the appearance of Akermanite at 31.1, Calcite at 29.2 and Aragonite at 26.4). The results also showed that the compressive strength and activity index of blast furnace slag increased significantly after extending the grinding time from 0-40 minutes (corresponding to compressive strength from 51.2 ÷ 7 2.1 MPa at 28 days of age and activity index of blast furnace slag from 91.92% -129.44%). The fine grinding process shows that the particle size of blast furnace slag is significantly reduced.

In addition, the paper also presents the effect of finely ground blast furnace slag in 40 minutes on foam concrete properties. Research results show that the use of finely crushed blast furnace slag by the mechanical grinding method to replace sand in foam concrete not only improves the mechanical properties such as compressive strength, flexural strength, the elastic modulus of foam concrete but also protect the environment, reduce product costs.


Vu, K.D., Bazhenova, S.I., 2020. Blast furnace slag application in mortars and concrete. In the collection: Sustainable development of the region: architecture, construction, transport. Materials of the 7th International Scientific and Practical Conference. Pp. 5.

Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S., Koroneos, C., 2008. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials. 152(2). Pp. 805–811. DOI:10.1016/j.jhazmat.2007.07.093.

Van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G., 2010. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization. 1(1). Pp. 145–155. DOI:10.1007/s12649-010-9015-9.

Nochaiya, T., Wongkeo, W., Pimraksa, K., Chaipanich, A., 2010. Microstructural, physical, and thermal analyses of Portland cement-fly ash-calcium hydroxide blended pastes. Journal of Thermal Analysis and Calorimetry. 100(1). Pp. 101–108. DOI:10.1007/s10973-009-0491-8.

Cheah, C.B., Chung, K.Y., Ramli, M., Lim, G.K., 2016. The engineering properties and microstructure development of cement mortar containing high volume of inter-grinded GGBS and PFA cured at ambient temperature. Construction and Building Materials. 122. Pp. 683–693. DOI:10.1016/j.conbuildmat.2016.06.105. URL:

Sajedi, F., 2012. Effect of curing regime and temperature on the compressive strength of cement-slag mortars. Construction and Building Materials. 36. Pp. 549–556. DOI:10.1016/j.conbuildmat.2012.06.036. URL:

Bilim, C., Karahan, O., Atiş, C.D., Ilkentapar, S., 2013. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Materials and Design. 44. Pp. 540–547. DOI:10.1016/j.matdes.2012.08.049.

Aljoumaily, Z.S., Noordin, N., Awang, H., Almulali, M.Z., 2012. The Effect of Blast Furnace Slag on Foam concrete in terms of Compressive strength. Advanced Materials Research. 587. Pp. 81–87. DOI:10.4028/

Oren, O.H., Gholampour, A., Gencel, O., Ozbakkaloglu, T., 2020. Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate. Construction and Building Materials. 238. Pp. 117774. DOI:10.1016/j.conbuildmat.2019.117774.

Ngamnikom, P., Songsermpong, S., 2011. The effects of freeze , dry , and wet grinding processes on rice flour properties and their energy consumption. Journal of Food Engineering. 104(4). Pp. 632–638. DOI:10.1016/j.jfoodeng.2011.02.001. URL:

Sajedi, F., Razak, H.A., 2011. Comparison of different methods for activation of ordinary Portland cement-slag mortars. Construction and Building Materials. 25(1). Pp. 30–38. DOI:10.1016/j.conbuildmat.2010.06.060. URL:

Norrarat, P., Tangchirapat, W., Jaturapitakkul, C., 2017. Evaluation of Heat Evolution of Pastes Containing High Volume of Ground River Sand and Ground Granulated Blast Furnace Slag. 23(1).

Wang, P.Z., Trettin, R., Rudert, V., 2005. Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems. (4). Pp. 161–166.

Wainwright, P.J., Rey, N. Cement & Concrete Composites The influence of ground granulated blastfurnace slag ( GGBS ) additions and time delay on the bleeding of concrete. Cement & Concrete Composites. 2000. 22. Pp. 253–257.

Siddique, R., Kaur, D., 2012. Properties of concrete containing ground granulated blast furnace slag ( GGBFS ) at elevated temperatures. Journal of Advanced Research. 3(1). Pp. 45–51. DOI:10.1016/j.jare.2011.03.004. URL:

Kim, D.V., Cong, L.N., Van, L.T., Bazhenova, S.I., 2020. Foamed concrete containing various amounts of organic-mineral additives. Journal of Physics: Conference Series. 1425. Pp. 12. DOI:10.1088/1742-6596/1425/1/012199.

Kim, D.V., Bazhenova, S., Van, L.T., Cong, L.N., 2020. Sustainable use of industrial-waste as fine-aggregate of Foam Concrete. IOP Conference Series: Materials Science and Engineering. 869. Pp. 10. DOI:10.1088/1757-899X/869/3/032022.

Zhao, X., Lim, S., Tan, C., Li, B., Ling, T., Huang, R., Wang, Q., 2015. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag. Materials. Pp. 462–473. DOI:10.3390/ma8020462.

Gökçe, H.S., Hatungimana, D., Ramyar, K., 2019. Effect of fly ash and silica fume on hardened properties of foam concrete. Construction and Building Materials. 194. DOI:10.1016/j.conbuildmat.2018.11.036.

Othuman, M.A., Wang, Y.C., 2011. Elevated-temperature thermal properties of lightweight foamed concrete. Construction and Building Materials. 25(2). Pp. 705–716. DOI:10.1016/j.conbuildmat.2010.07.016. URL:

GOST 24452-80., 1982. Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson’s ratio determination 8p.

TCVN 11586-2016,. 2016. Ground granulated blast-furnace slag for concrete and mortar. 12p.

Öner, M., 2000. Study of intergrinding and separate grinding of blast furnace slag cement. Cement and Concrete Research. 30(3). Pp. 473–480. DOI:10.1016/S0008-8846(00)00197-6.

Gan, L., Zhang, C., Zhou, J., Shangguan, F., 2012. Continuous cooling crystallization kinetics of a molten blast furnace slag. Journal of Non-Crystalline Solids. 358(1). Pp. 20–24. DOI:10.1016/j.jnoncrysol.2011.08.008. URL:

Zhou, X.S. and V., 2016. Lightweight concrete. 304p

Vu, K.D., Bazhenova, S.I., Tang, V.L., 2020. Influence-of-mineral-additives-fly-ash-blast-furnace-slag-on-mechanical-properties-of foam concrete. Building materials and technologies. 88(2). Pp. 25–34. DOI:10.33979/2073-7416-2020-88-2-25-34.

Neville, A.M., 2011. Properties of concrete. 53(9).

Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., 2020. Influence of rubber particles on the properties of foam concrete. Journal of Building Engineering. 30(December 2019). Pp. 101217. DOI:10.1016/j.jobe.2020.101217. URL:




How to Cite

Vu Kim, D., Ildarovna Bazhenova, S., Nguyen, T. C., Tang, V. L. ., Do, M. C. ., Le, V. L. ., Nguyen, V. D. ., Nguyen, C. L. ., & Hoang, M. T. (2022). The Blast furnace slag properties at different grinding times and its effect on foam concrete properties. Stavební Obzor - Civil Engineering Journal, 31(1), 32–44.