USE OF CALCINATION RESIDUE FROM RICE HUSK AS A SUBSTITUTE FOR CEMENT

Authors

  • Lyamine Briki Teacher researcher
  • Loucif Ali Bouacida University of Batna 2, Faculty of Technology, Department of Civil Engineering, Batna, Algeria
  • Noureddine Lahbari University of Batna 2, Faculty of Technology, Department of Civil Engineering, Batna, Algeria

DOI:

https://doi.org/10.14311/CEJ.2022.02.0024

Keywords:

Eco-cements, CPA cement, Rice husk ash, Calcination, resistance

Abstract

In this study, we have developed a new cement composed by a partial substitution of the clinker with artificial pozzolans rich in silica, obtained by treatment of lignocellulosic residues, in this case, ash from rice husk. This substitution is added to the clinker with percentages ranging from 25 to 75%. These substitutions were chosen on the basis of the presence of silica which can react with portlandite (Ca(OH)2).

The results obtained show that these materials have, after activation, a great pozzolanicity that allows their addition to the Portland clinker with a percentage of up to 25% of the mass of the clinker.

The improvement of this reactivity is achieved by calcinating these additions at temperatures of 750°C. This significantly reduces the CO2 emissions that accompany the production of Portland cement clinker.

References

Boden, T., Andres, B., Marland, G., 2016. Global CO2 Emissions From Fossil-fuel Burning (Cement Manufacture, and Gas Flaring).

Parrott, L. J., 2002. Cement, concrete and sustainability. A report on the progress of the UK cement and concrete industry towards sustainability (British Cement Association).

Flower, D. J. M., Sanjayan, J. G., 2007. Green House Gas Emissions due to Concrete Manufacture, (International Journal of Life Cycle Assessment), 12 (5), 282-288.

Habert, G., Roussel, N., 4-6 juin 2008. Comment concevoir un béton ayant un faible impact environnemental? (XXVIèmes Rencontres Universitaires de Génie Civil), Nancy, France.

Collins, F., 2010. Inclusion of Carbonation during the Life Cycle of Built and Recycled Concrete: Influence on their Carbon Footprint (International Journal of Life Cycle Assessment), 15 (6), 549-556.

Emad, B., Gholamreza, Z., Ezzatollah, S., et Alireza, B., 2013. Global strategies and potentials to curb CO2 emissions in cement industry (Journal of Cleaner Production), vol. 51, pp. 142-161.

Scrivener, K.L., John, V., Gartner, E.M., 2016. Eco-efficient cements: potential, economically viable solutions for a low-CO2, cement-based materials industry, in: United Nations Environmental Programme UNEP.

Scrivener, K., Martirena, F., Bishnoi, S., Maity, S., 2017. Calcined clay limestone cements (LC3), Cem. Concr. Res. 1 – 8, https://doi.org/10.1016/j.cemconres.2017.08.17.

Scrivener, K., Avet, F., Maraghechi, H., Zunino, F., Ston, J., Hanpongpun, W., et al., 2019. Impacting factors and properties of limestone calcined clay cements (LC3), Green Mater. 7 3 – 14, https://doi.org/10.1680/jgrma.18.00029.

Zunino, F., Martirena, F., Scrivener, K., 2020. Limestone Calcined Clay Cements (LC3), ACI Mater. J, Submitted.

Zunino, F., Scrivener, K., 2020. Assessing the effect of alkanolamine grinding aids in limestone calcined clay cements hydration, Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2020.121293.

Zunino, F., 2020. Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics (EPFL Thesis), 8173.

Zunino, F., Scrivener, K., 2020. Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials, Constr. Build. Mater. 244. Doi: https://doi.org/10.1016/j.conbuildmat.2020.118335.

Martirena Hernandez, J.F., Almenares-Reyes, R., Zunino, F., Alujas-Diaz, A., Scrivener, K.L., 2020. Color control in industrial clay calcination (RILEM Tech), Lett. 5 1 – 7. Doi :10.21809/rilemtechlett.2020.107.

Mokhtaria, B., Fatiha, K. A., et Abdelaziz, S., Juin 2009. Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle (Revue Nature et Technologie), vol. 01, p. 63 à 73.

Antoni, M., 2011. Investigation of Cement Substitution by Combined Addition of Calcined Clays and Limestone (Ecole Polytechnique Fédérale de Lausanne).

Rikioui, T., Tafraoui, A., et Mekkaoui, S. L., 2011. Emploi du métakaolin de la région sud-ouest d’Algérie dans la formulation du béton économique, e. A.

Hosseini, M. M., Shao, Y., et Whalen, J. K., 2011. Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada (Biosystems Engineering).

Ayrinhac, F. 2005. Valorisation des cendres volantes de chaudière à lit fluidisé circulant dans la filière du génie civil, Matériaux (INSA de Toulouse France).

Cheriaf, M., Cavalcante, J., et Pera, R. J., 1999. Pozzolanic properties of pulverized coal combustion bottom ash, Cem. Concr. Res. 29, p. 1387–1391.

Haldun, K., et Mine, K., 2007. Usage of coal combustion bottom ash in concrete mixture (Construction and Building Materials), pp. 1922-1928.

Habert, Assessing the environmental impact of conventional "green" cement production. In Pacheco-torgal, Cabeza, F., Labrincha, L.J., et De Magalhaes, A., 2014. Echo-efficient Construction and Building Materials: Life cycle assessment (LCA), echo-labelling and case studies (chap. 10, p.199-238). Cambridge, Woodhead Publishing Limited.

Kadri, E., Kenai, S., Ezziane, K., Siddique, R., DE Schutter, G., 2011. Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar (Applied clay science), vol. 53, p. 704-708.

Amato, I., 2013. Green Cement: Concrete Solutions (Nature), vol. 494, n° 7437, p. 300-301.

Setting the Standard for Sustainable Concrete Construction. 2015. In Ceratech. Green Concrete Sustainability.

Aghabaglou, A., MSezer, G.I., Ramyar, K., 2014. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point (Construction and Building Materials), vol. 70, p. 17-25.

Siline, M., Ghorbel, E., Bibi, M., 2016. Valorization of pozzolanicity of Algerian clay: Optimization of the heat treatment and mechanical characteristics of the involved cement mortars (Applied Clay Science), vol. 132-133, p. 712–721.

Holcim and Lafarge complete merger and create Lafarge Holcim, 10 july 2015. A new leader in the building materials industry. Media Release. In Lafarge Holcim. Media Relations.

Sui, S., Wilson, W., Georget, F., Maraghechi, H., Kazemi-Kamyab, H., Sun, W., et al., 2019. Quantification methods for chloride binding in Portland cement and limestone systems (Cem. Concr. Res.), 125. Doi: https://doi.org/10.1016/jcemconres.2019.105864.

Bentz, D.P., Stutzman, P.E., Zunino, F., 2017. Low-temperature curing strength enhancement in cement-based materials containing limestone powder (Mater. Struct. Constr.), 50, doi: https://doi.org/10.01617/s11527-017-1024-6.

Hoang, K., Justnes, H., Geiker, M., 2016. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture (Cem. Concr. Res.), 81 59 – 69, https://doi.org/10.1016/j.cemconres.2015.11.004.

Li, X., Ouzia, A., Scrivener, K., 2018. Laboratory synthesis of C3S on the kilogram scale (Cem. Concr. Res.), 108 201 – 207, https://doi.org/10.1016/6j.cemconres.2018.03.019.

Diana, B., Girts, B., et Liga, U., 2013. Coal Combustion Bottom Ash as Micro filler with Pozzolanic Properties for Traditional Concrete (Procedia Engineering), n° 157, pp. 149-158.

Hüseyin, Y. A., Metin, G., Mustafa, D., et Ilker, T., 2010. Utilization of waste marble dust as an additive in cement production (Materials and Design), vol. 31, p. 4039–4042.

Semcha, A., 2006. Valorisation des sédiments de dragage : Applications dans le BTP, cas du barrage de Fergoug (Université de Reims Champagne-Ardenne).

Ibrahim Nasr Morsi, M., 2011. Properties of rice straw cementitious composite (Thèse de doctorat de l’Universite technique de Darmstadt, Allemagne).

Salas Serrano J., and Veras Castro, J., 1985. Materiales de construccion con propriedades aislantes a base de cascara de arroz (Inf. la Constr.), vol. n°372.

Salas, J., Alvarez, M., and Veras, J., 1986. Lightweight insulating concretes with rice husk (Int. J. Cem. Compos. Light. Concr.), vol. 8, no. 3, pp. 171–180.

Serrano, T., Victoria Borrachero, M., Monzo, J., and Paya, J., 2012 Morteros aligerados con cascarilla de arroz: diseno de mezsclas evaluacion de propriedades (Dyna), vol. 175, pp. 128–136.

Gonzalez De la Cotera, M., 1982. Morteros ligeros de cascara de arroz, in IV Congreso Nacional de Ingeniería Civil.

Tamba, S., Cisse, I., Rendell, F., and Jauberthie, R., 2000. Rice husk in lightweight mortars, in Second international symposium on structural lightweight aggregate concrete.

Tamba, S., 2001. Bétons légers à base de déchets cellulosiques (Thèse de Doctorat de l’INSA de Rennes).

Jauberthie, R., Rendell, F., Tamba, S., and Cisse, I., 2003. Properties of cement—rice husk mixture (Constr. Build. Mater.), vol. 17, pp. 239–243.

Ganesan, K., Rajagopal, K., and Thangavel, K., 2008. Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete (Constr. Build. Mater.), vol. 22, no. 8, pp. 1675–1683.

Jauberthie, R., Rendell, F., Tamba, S., and Cisse, I., 2000. Origin of the pozzolanic effect of rice husks (Constr. Build. Mater.), vol. 14, no. 8, pp. 419–423.

Xu, W., Lo, Y. T., Ouyang, D., Memon, S. A., Xing, F., Wang, W., and Yuan, X., 2015. Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste (Constr. Build. Mater.), vol. 89, pp. 90–101.

Johar, N., Ahmad, I., and Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk (Ind. Crops Prod.), vol. 37, no. 1, pp. 93–99.

Tran, T. P. T., Benezet, J. C., and Bergeret, A., Jul. 2014. Rice and Einkorn wheat husks reinforced poly (lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks (Ind. Crops Prod.), vol. 58, pp. 111–124.

Siline, M., Omary, S., 2018. Optimization of the SO3 content of an Algerian Portland cement: Study on the effect various amounts of gypsum on cement properties (Construction and Building Materials), vol. 164, p. 259–262.

Jaturapitakkul, C., and Ronngreung, B., 2003. Cementing Material from Calcium Carbide Residue-Rice Husk Ash.

Bui, D. D., 2001. Rice husk Ash as a Mineral Admixture for High Performance Concrete, Pays-Bas.

Sabuni, E., 1995. Research into the potentialities of rice husk ash cement for application in rural Tanzania, Pays-Bas.

Bui, D. D., Hu, J., and Stroeven, P., 2005. Particle size effect on the strenght of rice husk ash blended gap-graded Portland cement concrete.

Sugita, S. Shoya, M., and Tokuda, H., 1993. Evaluation of Pozzolanic Activity of Rice Husk Ash, USA.

Downloads

Published

2022-07-31

How to Cite

Briki, L., Bouacida, L. A., & Lahbari, N. (2022). USE OF CALCINATION RESIDUE FROM RICE HUSK AS A SUBSTITUTE FOR CEMENT. Stavební Obzor - Civil Engineering Journal, 31(2), 317–331. https://doi.org/10.14311/CEJ.2022.02.0024

Issue

Section

Articles