TEMPERATURE MODELLING IN ASPHALTIC CONCRETE FACINGS, THE REFLECTIVE SURFACE EFFECT SIMULATION CASE STUDY: GHRIB DAM (AIN DEFLA, ALGERIA)

Authors

  • Chebbah Lynda University of Mohamed Khider, Department of Hydraulic BP 145 RP, Biskra 07000, Algeria
  • Djemili Lakhdar University of Badji Mokhtar, Department of Hydraulic B.P.12, Annaba 23000, Algeria;
  • Chiblak Mohamed University of Damascus, Syria Department of Hydraulic
  • Bouziane Mohammed Tawfik University of Mohamed Khider, Department of Hydraulic BP 145 RP, Biskra 07000, Algeria

DOI:

https://doi.org/10.14311/CEJ.2020.04.0038

Keywords:

Asphaltic concrete facing, Heat transfer, Ghrib dam, Reflective surface, Modelling, Fluent

Abstract

The asphaltic concrete facing is one of the most widely used components for waterproofing rockfill dams. It is, particularly in the case of hydroelectric pumped storage facilities, often highly exposed to significant temperature fluctuations, which are caused by solar radiation, variation in the water level in the reservoir, frost in the winter season, as well as wind speed and direction, and precipitation. To better explain the heat transfer phenomenon, it is necessary to know the temperature variations in the different layers of the asphaltic concrete facing. This study describes the measurement of the temperature in the asphaltic concrete facing (raw and protected) of the Ghrib dam (Ain Defla, Algeria) and its evaluation using a numerical model of the heat flow using the Fluent software. First, a validation of the model by comparison with experimental measurements, in the case of a daily variation in ambient temperature, the comparison of the results of the calculation of the numerical model with the real measurements shows an excellent similarity. Then we simulate the application of thermal protection by adding a reflective paint to the facing surface. The results of this simulation show that the reflection of solar radiation by the reflective surface has the potential to cool the asphaltic concrete facing and reduce the temperatures significantly, the temperature peak as well as reduce it to 11.47 °C, this happens at noon when the heat is very high, which is significant for our asphaltic concrete facing, where the temperatures reach their maximum values (49°C) in the raw case (without protection).

Downloads

Download data is not yet available.

References

Djemili L., Chiblak M., 2007. Study of the temperature distribution in the bituminous concrete facing used in fill dams in the region of west Algeria ( Courier du savoir).Vol 8 . 576-579.

Djemili L. Et al.,2012. Comportement du masque d’étanchéité du barrage Ghrib (Algérie) en absence de la protection ( Courier du savoir) . Vol 13. 21-25.

Fadel I., 2005. Asphalt mixture-designing basics in dams sealing - designing of impermeable asphalt shell used in AL-Sorani Dam, Tishreen university journal for studies and scientific research- engineering sciences series. Vol 27. 23-38.

Chebbah L. et al., 2016. Optimisation de la formule empirique la plus fiable pour la détermination de la température de la surface du masque en béton bitumineux. Cas du barrage Ghrib (Ain Defla, Algérie) SNEE 01 – Mila.

DOI 10.14311/CEJ.2020.04.0050 594

Chiblak M., Djemili L., 2011. Asphaltic concrete facing for rockfill dams in arid and semi-arid countries: A case study of Alsourani Dam, Syria, International Journal of the Physical Sciences. Vol 36. 8157 – 8163.

Djemili L., 2006. Critères de choix de projet des barrages en terre « étanchéité par le masque en béton bitumineux. PhD Thesis. Université de Batna pp. 91

Rychen R., 2013. Impact du changement climatique sur les infrastructures routières -Analyse de risque et mesures d’adaptation . PhD Thesis. EPFL, Lauzane, Switzerland pp. 389.

Perrot O., 2011. Cours de rayonnement .Département Génie Thermique et énergie I.U.T. de Saint-Omer Dunkerque pp. 101.

ChataignerY., 2008. Modélisation du transfert thermique dans un remblai sur pergélisol élaborations de stratégies pour faire face aux changements climatiques. Thèse de maître es sciences (M.Se.). Université Laval Québec pp. 137.

Ghouielem.K. 2014. Impact du fluage et de température sur les organes de lutte contre les infiltrations dans les barrages. PhD Thesis. Université Mouloud Maameri Tizi ouzzou pp. 166.

Adam K. et al., 2016. Investigation on the temperature of the asphalt-concrete facing of embankment dams. International Journal of Pavement Research and Technology .Vol 9. 73–81.

Belghazi H., 2008. Modélisation analytique du transfert instationnaire de la chaleur dans un matériau bicouche en contact imparfait et soumis à une source de chaleur en mouvement .Thése. Université de Limoges pp.171

Navaro J., et al., 2010. Modeling the cooling of asphalt mix from its output from a production plant to compaction on road construction sites

Incropera F P. Et al., 2006. Fundamentals of heat and mass transfer, 6th (Eds). John Wiley & Sons, Inc., USA.

Pilate O., 2007. Evolution de la température d’une couche d’enrobé bitumineux nouvellement posée . Centre de recherche routier , Bruxelles, Compte Rendu De Recherche, CR42/06, Belgium pp.88.

Downloads

Published

2020-12-31

How to Cite

Lynda, C., Lakhdar, D., Mohamed, C., & Tawfik, B. M. (2020). TEMPERATURE MODELLING IN ASPHALTIC CONCRETE FACINGS, THE REFLECTIVE SURFACE EFFECT SIMULATION CASE STUDY: GHRIB DAM (AIN DEFLA, ALGERIA). Stavební Obzor - Civil Engineering Journal, 29(4). https://doi.org/10.14311/CEJ.2020.04.0038

Issue

Section

Articles