COHESION TEST OF A SINGLE IMPREGNATED AR-GLASS ROVING IN HIGH-PERFORMANCE CONCRETE

Authors

  • Tomáš Vlach University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic
  • Jakub Řepka University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic
  • Jakub Hájek University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic
  • Richard Fürst University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic
  • Zuzana Jirkalová University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic
  • Petr Hájek University Center for Energy Efficient Buildings of CTU in Prague, Buštěhrad, Třinecká 1024, Czech Republic

DOI:

https://doi.org/10.14311/CEJ.2020.03.0032

Keywords:

Concrete, High performance concrete, Textile reinforcement, Cohesion, Interaction, Roving, Alkali resistant glass, Surface treatment

Abstract

The development of light and very thin concrete building structures and demand for extremely thin elements in design are inter alia reasons for the development of composite materials as non-traditional reinforcement. Composite materials are currently used as reinforcement mostly in the form of fiber reinforced polymer bars similar to traditional steel reinforcement bars, but the last decade sees also rise in the use of technical textiles. This article is focused on the interaction between impregnated textile reinforcement and high-performance concrete matrix and its easy determination using originally modified pullout test. The second aim of this article is improvement of interaction conditions between reinforcement and cementitious matrix using fine-grained silica sand applied on the surface of the composite reinforcement similarly to the traditional fiber reinforced polymer reinforcement with commonly used diameters. To investigate an effect of this modification a bending test was performed on small thin concrete slabs with different amounts of reinforcement.

Downloads

Download data is not yet available.

References

L. Laiblová et al., „Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study", Materials, roč. 12, č. 19, Art. č. 19, led. 2019.

N. Williams Portal, I. Fernandez Perez, L. Nyholm Thrane, a K. Lundgren, „Pull-out of textile reinforcement in concrete", Constr. Build. Mater., roč. 71, s. 63–71, lis. 2014.

M. Krüger, „Vorgespannter textilbewehrter Beton (Prestressed textile reinforced concrete)", Philos. Dr. Thesis Stuttg. Univ. Stuttg. Fak. Bau- Umweltingenieurwissenschaften Diss, 2004.

E. Lorenz a R. Ortlepp, „Bond Behavior of Textile Reinforcements - Development of a Pull-Out Test and Modeling of the Respective Bond versus Slip Relation", in High Performance Fiber Reinforced Cement Composites 6, G. J. Parra-Montesinos, H. W. Reinhardt, a A. E. Naaman, Ed. Springer Netherlands, 2012, s. 479–486.

W. Brameshuber, Report 36: textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC, roč. 36. RILEM publications, 2006.

B. Banholzer, „Bond behaviour of a multi-filament yarn embedded in a cementitious matrix", PhD Thesis, Bibliothek der RWTH Aachen, 2004.

M. Kynclova, „Environmentally effective waffle floor structures from fibre concrete", prezentováno v International PhD Symposium in Civil Engineering, Technical University of Denmark, Lyngby, 2010.

T. Vlach, P. Hájek, C. Fiala, L. Laiblová, J. Řepka, a P. Kokeš, „Waffle Facade Elements from Textile Reinforced High Performance Concrete", Proc. HiPerMat, 2016.

C. Fiala et al., „Construction and Static Loading Tests of Experimental Subtle Frame from High Performance Concrete for Energy Efficient Buildings", Solid State Phenomena, 2017.

A. Chira, A. Kumar, T. Vlach, L. Laiblová, a P. Hajek, „Textile-reinforced concrete facade panels with rigid foam core prisms", J. Sandw. Struct. Mater., roč. 18, č. 2, Art. č. 2, bře. 2016.

S. Yin, M. Na, Y. Yu, a J. Wu, „Research on the flexural performance of RC beams strengthened with TRC under the coupling action of load and marine environment", Constr. Build. Mater., roč. 132, s. 251–261, úno. 2017.

T. Vlach, L. Laiblová, M. Ženíšek, A. Chira, A. Kumar, a P. Hájek, „The Effect of Surface Treatments of Textile Reinforcement on Mechanical Parameters of HPC Facade Elements", in Key Engineering Materials, 2016, roč. 677, s. 203–206.

T. Vlach, M. Novotná, C. Fiala, L. Laiblová, a P. Hájek, „Cohesion of Composite Reinforcement Produced from Rovings with High Performance Concrete", Appl. Mech. Mater., roč. 732, s. 397–402, 2015.

DOI 10.14311/CEJ.2020.03.0032 369

V. Tomáš et al., „Comparison of Different Methods for Determination of Modulus of Elasticity of Composite Reinforcement Produced from Roving", Adv. Mater. Res., č. 1054, Art. č. 1054, 2014, Viděno: úno. 27, 2017.

L. Laiblová, T. Vlach, M. Ženíšek, A. Kumar, a P. Hájek, „Comparison of Different Types of Glass Reinforcement for HPC Facade Elements from Mechanical and Economical Aspects", Key Engineering Materials, 2017.

T. Vlach, L. Laiblová, M. Ženíšek, J. Řepka, a P. Hájek, „Soft Insert for Support Modeling of Slightly Textile Reinforced Concrete", Key Engineering Materials, 2018.

Downloads

Published

2020-10-31

Issue

Section

Articles

How to Cite

COHESION TEST OF A SINGLE IMPREGNATED AR-GLASS ROVING IN HIGH-PERFORMANCE CONCRETE. (2020). Stavební Obzor - Civil Engineering Journal, 29(3). https://doi.org/10.14311/CEJ.2020.03.0032