EFFECT OF KAOLIN ADDITION INTO METAKAOLIN GEOPOLYMER COMPOSITE

Authors

  • Alexey Manaenkov Czech Technical University, Faculty of Civil Engineering, Experimental Centre, Thákurova 2636/7a, Prague, Czech Republic
  • Michaela Steinerová Czech Academy of Sciences, Laboratory of Rock Structure and Mechanics, V Holešovičkách 94/41, Prague, Czech Republic;
  • Ekaterina Kukleva Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Břehová 7, Prague, Czech Republic
  • Jiří Litoš Czech Technical University, Faculty of Civil Engineering, Experimental Centre, Thákurova 2636/7a, Prague, Czech Republic

DOI:

https://doi.org/10.14311/CEJ.2020.01.0001

Keywords:

Geopolymer, Metakaolin, Kaolin, Mechanical properties, Frost resistance

Abstract

Industrially produced metakaolin may contain raw kaolin residues. Therefore, the aim of this work was to determine the impact of kaolin remains on the metakaolin and the final geopolymer quality. A series of mixtures based on metakaolin (Mefisto L05 by CLUZ Nove Straseci, Czech Republic) was prepared with the 0-60 wt% gradual addition of raw kaolin, and the mechanical strength of the final geopolymer products was tested. It was found that up to a 20 wt. % amount of kaolin in metakaolin does not weaken the geopolymer’s performance. Moreover, a geopolymer made of metakaolin with 2-4 wt% of kaolin showed slightly better mechanical properties than the geopolymers made from metakaolin itself.

Downloads

Download data is not yet available.

References

Davidovits J., 2017. Geopolymers: Ceramic-Like Inorganic Polymers. Journal of Ceramic Science and Technology, vol. 8(3): 335-350. DOI: 10.4416/JCST2017-00038

Khale D., Chaudhary R., 2007. Mechanism of Geopolymerization and Factors Influencing Its Development: A Review. Journal of Materials Science, vol. 42: 729-746. DOI: 10.1007/s10853-006-0401-4

Škvára F., 2007. Alkali Activated Materials or Geopolymers? Ceramics Silikáty, vol. 51(3): 173–177

Škvára F., 2008. Geopolymer Concrete: An Ancient Material Too? Ceramics Silikáty, vol. 52(4): 296-298

Komnitsas K.A., 2011. Potential of Geopolymer Technology Towards Green Buildings and Sustainable Cities. Procedia Engineer, vol. 21: 1023-1032. DOI: 10.1016/j.proeng.2011.11.2108

Van Deventer J.S.J., Provis J.L., Duxson P., 2012. Technical and Commercial Progress in the Adoption of Geopolymer Cement. Minerals Engineering, vol. 29: 89–104. DOI: 0.1016/j.mineng.2011.09.009

Zhang Z.H., Zhu H.J., Zhou C.H., Wang H., 2016. Geopolymer From Kaolin in China: an Overview. Applied Clay Science, vol. 119: 31–41. DOI: 10.1016/j.clay.2015.04.023

Parthiban K., Vaithianathan S., 2015. Effect of Kaolin Content and Alkaline Concentration on the Strength Development of Geopolymer Concrete. International Journal of Chemtech Research, vol. 8: 0974-4290. ISSN: 0974-4290

Duxson P., Lukey G.C., Van Deventer J. S. J., 2006. Evolution of Gel Structure During Thermal Processing of Na-Geopolymer Gels. Langmuir, vol. 22(21): 8750-8757. DOI: 10.1021/la0604026

Duxson P., Lukey G. C., Van Deventer J. S.J., 2007. Thermal Evolution of Metakaolin Geopolymers: Part 2 – Phase Stability and Structural Development. Journal of Non-Crystalline Solids, vol. 353: 2186–2200. DOI: 10.1016/j.jnoncrysol.2007.02.050

Davidovits J., 1994. High-Alkali Cements For 21St Century Concretes. In Symposium: Concrete Technology, Past, Present and Future, 383–397

Van Deventer J.S.J., 2017. Handbook of Low Carbon Concrete, Chapter 10. ISBN: 978-0-12-804524-4

Autef A., Joussein E., Gasgnier G., Pronier S., Sobrados I., Sanz J., Rossignol S., 2013. Role of metakaolin dehydroxylation in geopolymer synthesis. Powder Technology, vol. 250: 33-39. DOI: 10.1016/j.powtec.2013.09.022

Wang H., Li H., Yan F., 2005. Synthesis and Mechanical Properties of Metakaolinite-Based Geopolymer. Colloids and Surfaces A-Physicochemical and Engineering Aspects, vol. 268: 1–6. DOI: 10.1016/j.colsurfa.2005.01.016

ČSN EN 1015-11 (722400), 1999. Zkušební metody malt pro zdivo – Část 11: Stanovení pevnosti zatvrdlých malt v tahu za ohybu a v tlaku.

ČSN 73 1322, 1969. Stanovení Mrazuvzdornosti Betonu. Praha: Český Normalizační Institut

ICDD PDF-2 Database, Version 2013, ISDD, USA

HR Inorganics I. – Minerals Database – FTIR, 2016. Thermo Scientific™ Omnic™, USA

Oliver W.C., Pharr G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, vol. 19(1). DOI: https://doi.org/10.1557/jmr.2004.19.1.3

Bhaskar J.S., Gopalakrishnarao P., 2010. Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics, vol. 1: 206-210. DOI: 10.4236/jmp.2010.14031

Downloads

Published

2020-04-30

How to Cite

Manaenkov, A., Steinerová, M., Kukleva, E., & Litoš, J. (2020). EFFECT OF KAOLIN ADDITION INTO METAKAOLIN GEOPOLYMER COMPOSITE. Stavební Obzor - Civil Engineering Journal, 29(1). https://doi.org/10.14311/CEJ.2020.01.0001

Issue

Section

Articles