PHYSICAL AND MECHANICAL PROPERTIES OF RECYCLED PET COMPOSITES

Authors

  • Yurani García Quintero Grupo de Investigación Innovación y Sostenibilidad Aplicadas a las Infraestructuras en Ingeniería - ISAII, Facultad de Ingenierías, Politécnico Colombiano Jaime Isaza Cadavid PCJIC, CO 050022, Medellín, Colombia
  • Daniel Ruíz Figueroa Grupo de Investigación Innovación y Sostenibilidad Aplicadas a las Infraestructuras en Ingeniería - ISAII, Facultad de Ingenierías, Politécnico Colombiano Jaime Isaza Cadavid PCJIC, CO 050022, Medellín, Colombia
  • Harveth Gil Grupo de Investigación Innovación y Sostenibilidad Aplicadas a las Infraestructuras en Ingeniería - ISAII, Facultad de Ingenierías, Politécnico Colombiano Jaime Isaza Cadavid PCJIC, CO 050022, Medellín, Colombia,
  • Alejandro Alberto Zuleta Grupo de Investigación de Estudios en Diseño - GED, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana- Sede Medellín, CO 050031, Medellín, Colombia

DOI:

https://doi.org/10.14311/CEJ.2019.04.0045

Keywords:

Polymer-matrix composites (PMCs), Mechanical properties, Compressive strength, Life cycle assessment

Abstract

Virgin and recycled polyethylene terephthalate (PET) has been examined for the production of composites with additions of 5-20% by weight of sand particles. Density and compressive strength were estimated using virgin (V-PET) and recycled PET (R-PET). Scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) spectroscopy was used to characterize the morphology and elemental composition of the composites. Also, thermogravimetric analysis (TGA) was used to find degradation temperature on both types of polymer. On the other hand, a streamlined life cycle assessment (SLCA) was made for the different composites to get environmental impacts. The results indicated that a maximum of 52.94 MPa and 52.03 MPa on compressive strength were obtained for virgin and recycled PET without sand, respectively. With the addition of sand, compressive strength decreases in both cases. The best performance was found at 5% sand addition, which causes a reduction of 9.07% and 16.68% for V-PET and R-PET composites, respectively. Environmental results show that resource extraction is the dominant life stage; meanwhile, gas residues are the dominant environmental impact in both types of composites. R-PET composites are the best environmentally friendly option because they used recycled material, which in return recovers part of the embodied energy used to make the primary production. The results show it could be explored the potential to be used the composites in pavement blocks or architectonic elements.

Downloads

Download data is not yet available.

References

Amariz, A.D.M., Jiménez, M.L.C., 2014. Diseño y fabricación de ladrillo reutilizando materiales a base de PET, INGE CUC, vol. 10: 76–80.

da Silva, D.A., Betioli, A.M., Gleize, P., Roman, H.R., Gomez, L., Ribeiro, J, 2005. Degradation of recycled PET fibers in Portland cement-based materials. Cement and Concrete Research, vol. 35: 1741–1746. https://doi.org/10.1016/j.cemconres.2004.10.040.

Tavares, C., Ribeiro, M., Ferreira, A., Guedes, R., 2002. Creep behaviour of FRP-reinforced polymer concrete. Composite Structures, vol. 57: 47–51. https://doi.org/10.1016/S0263-8223(02)00061-2.

Ochi, T., Okubo, S., Fukui, K., 2007. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, vol. 29: 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002.

Akçaözoğlu, S., Atiş, C.D., Akçaözoğlu, K., 2010. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Management, vol. 30: 285–290. https://doi.org/10.1016/j.wasman.2009.09.033.

Vidales, J.M.M., Hernández, L.N., López, J.I.T., Flores, E.M.M., Hernández, L.S., 2014. Polymer mortars prepared using a polymeric resin and particles obtained from waste pet bottle. Construction and Building Materials, vol. 65: 376–383. https://doi.org/10.1016/j.conbuildmat.2014.04.114.

Tanrattanakul, V., Hiltner, A., Baer, E., Perkins, W., Massey, F., Moet, A., 1997. Effect of elastomer functionality on toughened PET. Polymer, vol. 38: 4117–4125. https://doi.org/10.1016/S0032-3861(96)00991-3.

Jnr, A.K-L., Yunana, D., Kamsouloum, P., Webster, M., Wilson, D.C., Cheeseman, C., 2018. Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks. Waste Management, vol. 80: 112–118. https://doi.org/10.1016/j.wasman.2018.09.003

Zahran, R., 1998. Effect of sand addition on the tensile properties of compression moulded sand/polyethylene composite system. Materials Letters, vol. 34: 161–167. https://doi.org/10.1016/S0167-577X(97)00154-7.

Zhang, Q., Tian, M., Wu, Y., Lin, G., Zhang, L., 2004. Effect of particle size on the properties of Mg (OH) 2‐filled rubber composites. Journal of Applied Polymer Science, vol. 94: 2341–2346. https://doi.org/10.1002/app.21037.

Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., Varlet, J., 2001. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer, vol. 42: 8759–8768. https://doi.org/10.1016/S0032-3861(01)00446-3.

Mohandesi, J.A., Refahi, A., Meresht, E.S., Berenji, S., 2011. Effect of temperature and particle weight fraction on mechanical and micromechanical properties of sand-polyethylene terephthalate composites: A laboratory and discrete element method study. Composites Part B: Engineering, vol. 42: 1461–1467. https://doi.org/10.1016/j.compositesb.2011.04.048.

Graedel, T.E., 1998. Streamlined life-cycle assessment. (Prentice Hall Upper Saddle River, NJ) 99-110.

Graedel, T.E., Allenby, B.R., 2010. Industrial ecology and sustainable engineering. (Prentice Hall Upper Saddle River, NJ).

Lee, S., Xu, X., 2005. Design for the environment: life cycle assessment and sustainable packaging issues. International Journal of Environmental Technology and Management, vol. 5: 14–41.

Ashby, M.F., 2012. Materials and the environment: eco-informed material choice. (Elsevier) 616 pp.

Li, Y., White, D.J., Peyton, R.L., 1998. Composite material from fly ash and post-consumer PET. Resources, Conservation and Recycling, vol. 24: 87–93. https://doi.org/10.1016/S0921-3449(98)00041-X.

Demirel, B., Yaraş, A., Elçiçek, H., 2016. Crystallization behavior of PET materials. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 13: 26–35.

Dimitrov, N., Krehula, L.K., Siročić, A.P., Hrnjak-Murgić, Z., 2013. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability, vol. 98: 972–979. https://doi.org/10.1016/j.polymdegradstab.2013.02.013.

Lecomte, H.A., Liggat, J.J., 2006. Degradation mechanism of diethylene glycol units in a terephthalate polymer. Polymer Degradation and Stability, vol. 91: 681–689. https://doi.org/10.1016/j.polymdegradstab.2005.05.028.

Elmari, A., Abid, K., Harzallah, O., Lallam, A., 2015. Characterization of recycled/virgin PET polymers and their composites. Nano vol. 3: 11–16. doi: 10.11648/j.nano.s.2015030401.13.

Awaja, F., Gilbert, M., Kelly, G., Fox, B., Pigram, P.J., 2009. Adhesion of polymers. Progress in Polymer Science, vol. 34: 948–968. https://doi.org/10.1016/j.progpolymsci.2009.04.007.

Pukánszky, B., Fekete, E., 1999. Adhesion and surface modification, 109-153 (in: Mineral Fillers in Thermoplastics I, Springer).

Huang, C.-C., Ma, H.-W., 2004. A multidimensional environmental evaluation of packaging materials. Science of the Total Environment, vol. 324: 161–172. https://doi.org/10.1016/j.scitotenv.2003.10.039.

Γεωργακέλλος, Δ.Α., 2005. The use of streamlined LCA for the environmental assessment of plastics recycling: the case of a PVC container. SPOUDAI-Journal of Economics and Business, vol. 55: 31–46.

waters (ČVUT v Praze) 415 pp.

Downloads

Published

2019-12-31

How to Cite

Quintero, Y. G., Figueroa, D. R., Gil, H., & Zuleta, A. A. (2019). PHYSICAL AND MECHANICAL PROPERTIES OF RECYCLED PET COMPOSITES. Stavební Obzor - Civil Engineering Journal, 28(4). https://doi.org/10.14311/CEJ.2019.04.0045

Issue

Section

Articles