DOUBLE SIZE FULLJET FIELD RAINFALL SIMULATOR FOR COMPLEX INTERRILL AND RILL EROSION STUDIES
DOI:
https://doi.org/10.14311/CEJ.2018.02.0015Keywords:
Rainfall simulation, Surface runoff, Subsurface runoff, Mobile rainfall simulatorAbstract
Field observations and consecutive modelling of soil erosion events proved to be essential for understanding and predicting erosion and sediment transport. An experimental approach often utilizes a large variety of rainfall simulators. In this technical note a complex methodology is introduced, using a mobile rainfall simulator developed at the Czech Technical University in Prague. An experimental setup with two watered plots (16 + 1 m2) was established, which enables simultaneous measurements in two scales and monitoring of surface runoff, flow velocity, infiltration, sediment subsurface flow, vegetation cover effect suspended solids and phosphorus transport, surface roughness and surface evolution under rainfall and other variables. The simulator is built on a trailer transportable by car with folding arm carrying four FullJet WSQ nozzles operating independently. The configuration and water pressure 0.7 bar leads to the total watered area 2.4 x 9.6 m. Average drop size (d50) reaches 1.75 mm for 0.7 bar pressure. Christiansen uniformity index CU reaches 85%. A selection of experimental results highlights both the advantages and the weaknesses of the presented experimental setup.
Downloads
References
Toy, T.J., Foster, G.R., Renard, K.G., 2002. Soil Erosion: Processes, Prediction, Measurement, and Control. John Wiley and Sons, New York, USA.
Krása, J., Dostál, T., Van Rompaey, A., Váska, J., Vrána, K., 2005. Reservoirs’ siltation measurments and sediment transport assessment in the Czech Republic, the Vrchlice catchment study. Catena 64, 348–362. doi:10.1016/j.catena.2005.08.015
Nolan, S.C., Van Vliet, L.J.P., Goddard, T.W., Flesch, T.K., 1997. Estimating storm erosion with a rainfall simultor. Can. J. Soil Sci. 77, 669–676. doi:10.4141/S96-079
Barbosa, F.T., Bertol, I., Luciano, R. V., Gonzalez, A.P., 2009. Phosphorus losses in water and sediments in runoff of the water erosion in oat and vetch crops seed in contour and downhill. Soil Tillage Res. 106, 22–28. doi:10.1016/j.still.2009.09.004
Sepaskhah, A.R., Shahabizad, V., 2010. Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator. Biosyst. Eng. 106, 513–520. doi:10.1016/j.biosystemseng.2010.05.019
Otero, J.D., Figueroa, A., Muñoz, F.A., Peña, M.R., 2011. Loss of soil and nutrients by surface runoff in two agro-ecosystems within an Andean paramo area. Ecol. Eng. 37, 2035–2043. doi:10.1016/j.ecoleng.2011.08.001
Iserloh, T., Ries, J.B., Arnáeez, J., Boix-Fayos, C., Butzen, V., Cerda, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geissler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regués, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S., 2013. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 110, 100–112. doi:10.1016/j.catena.2013.05.013
Assouline, S., El Idrissi, A., Persoons, E., 1997. Modelling the physical characteristics of simulated rainfall: A comparison with natural rainfall. J. Hydrol. 196, 336–347. doi:10.1016/S0022-1694(96)03256-8
Sanguesa, C., Arumi, J., Pizaro, R., Link, O., 2010. A Rainfall Simulator for the in Situ Study of Superficial Runoff and Soil Erosion. Chil. J. Agric. Res. 70, 178–182.
Strauss, P., Pitty, J., Pfeffer, M., Mentler, A., 2000. Rainfall Simulation for Outdoor Experiments, in: Jamet, P., Cornejo, J. (Eds.), Current Research Methods to Assess the Environmental Fate of Pesticides. INRA Editions, pp. 329–333.
Marques, M.J., Bienes, R., Jiménez, L., Pérez-Rodríguez, R., 2007. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots. Sci. Total Environ. 378, 161–165. doi:10.1016/j.scitotenv.2007.01.043
Schindler, D.W., 2012. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B Biol. Sci. 279, 4322–4333. doi:10.1098/rspb.2012.1032
Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems, Journal of Phycology. doi:10.1046/j.1529-8817.2001.37602.x
Boardman, J., Poesen, J., 2006. Soil Erosion in Europe: Major Processes, Causes and Consequences, in: Soil Erosion in Europe. John Wiley & Sons, Chichester, UK, pp. 477–487. doi:10.1002/0470859202.ch36
Kutílek, M., Nielsen, D.R., 1994. Soil hydrology. Geoecology textbook,. Catena-Verlag
Zhongming, W., Lees, B.G., Feng, J., Wanning, L., Haijing, S., 2010. Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. Catena 83, 87–93. doi:10.1016/j.catena.2010.07.006
Quine, T.A., Walling, D.E., Chakela, Q.K., Mandiringana, O.T., Zhang, X., 1999. Rates and patterns of tillage and water erosion on terraces and contour strips: Evidence from caesium-137 measurements. Catena 36, 115–142. doi:10.1016/S0341-8162(99)00006-5
Styczen, M.E., Morgan, R.P.C., 1995. Engineering properties of vegetation., in: Morgan, R.P.C., Rickson, R.J. (Eds.), Slope Stabilization and Erosion Control: A Bioengineering Approach. McGraw Hill, London, pp. 5–58.
Govers, G., Giménez, R., Van Oost, K., 2007. Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Science Rev. 84, 87–102. doi:10.1016/j.earscirev.2007.06.001
Kavka, P., Dostál, T., Iserloh, T., Davidová, T., Krása, J., David, V., Vopravil, J., Khel, T., 2015. A medium scale mobile rainfall simulator for experiments on soil erosion and soil hydrology, in: Geophysical Research Abstracts, European Geosciences Union General Assembly 2015. Copernicus Publications, Göttingen.
Stewart, B.A., Howell, T.A., 2003. Encyclopedia of Water Science. Marcel Dekker, New York, USA.
Davidová, T., Dostál, T., David, V., Strauss, P., 2015. Determining the protective effect of agricultural crops on the soil erosion process using a field rainfall simulator. Plant Soil Environ. 61, 109–115. doi:10.17221/903/2014-PSE
Christiansen, J.E., 1942. Irrigation by Sprinkling, California Agricultural Experiment Station Bulletin.
CSN - EN 872:2005: Water quality - Determination of suspended solids - Method by filtration through glass fibre filters, 2005. . Czech Normalisatic Institute, Prague, Czech Republic.
Hou, X., Jones, T.B., 2000. Inductively Coupled Plasma–Optical Emission Spectrometry. Spectrosc. Lett. 42, 58–61. doi:10.1080/00387010802375065
ASTM, 2007. Standard test method for determination of rolled erosion control product (RECP) performance in protecting hillslopes from rainfall-induced erosion. D 6459-07. American Soc. of Testing and Materials, West Conshohocken, PA.
Marzahn, P., Rieke-Zapp, D., Ludwig, R., 2012. Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system. ISPRS J. Photogramm. Remote Sens. 72, 80–89. doi:10.1016/j.isprsjprs.2012.06.005
Aguilar, M.A., Aguilar, F.J., Negreiros, J., 2009. Off-the-shelf laser scanning and close-range digital photogrammetry for measuring agricultural soils microrelief. Biosyst. Eng. 103, 504–517. doi:10.1016/j.biosystemseng.2009.02.010
Kolecka, N., 2011. Photo-Based 3D Scanning Vs . Laser Scanning – Competitive Data Acquisition Methods for Digital Terrain Modelling of Steep, in: ISPRS Hannover Workshop 2011. Hanover, pp. 14–17.
Remondino, F., El-Hakim, S., 2006. Image-based 3D modelling: A review. Photogramm. Rec. 21, 269–291. doi:10.1111/j.1477-9730.2006.00383.x
Báčová, M., Krása, J., 2016. Application of historical and recent aerial imagery in monitoring water erosion occurrences in Czech highlands. Soil Water Res. 11, 267–276. doi:10.17221/178/2015-SWR
Li-Cor, I., 1992. LAI-2000 Plant Canopy Analyzer Operating Manual. LI-COR Inc., Lincoln, Nebraska, USA 180.
Garrigues, S., Shabanov, N. V., Swanson, K., Morisette, J.T., Baret, F., Myneni, R.B., 2008. Intercomparison and sensitivity analysis of Leaf Area Index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric. For. Meteorol. 148, 1193–1209. doi:10.1016/j.agrformet.2008.02.014
Vahabi, J., Nikkami, D., 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. Int. J. Sediment Res. 23, 376–386. doi:10.1016/S1001-6279(09)60008-1
Liu, Y.J., Hu, J.M., Wang, T.W., Cai, C.F., Li, Z.X., Zhang, Y., 2016. Effects of vegetation cover and road-concentrated flow on hillslope erosion in rainfall and scouring simulation tests in the Three Gorges Reservoir Area, China. Catena 136, 108–117. doi:10.1016/j.catena.2015.06.006
Xin, Y., Xie, Y., Liu, Y., Liu, H., Ren, X., 2016. Residue cover effects on soil erosion and the infiltration in black soil under simulated rainfall experiments. J. Hydrol. 543, 651–658. doi:10.1016/j.jhydrol.2016.10.036
Ali, S., Jan, A., Zhang, P., Khan, M.N., Cai, T., Wei, T., Ren, X., Jia, Q., Han, Q., Jia, Z., 2016. Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China. Agric. Water Manag. 178, 1–11. doi:10.1016/j.agwat.2016.09.003
Kato, H., Onda, Y., Tanaka, Y., Asano, M., 2009. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia. Catena 76, 173–181. doi:10.1016/j.catena.2008.11.003
Boar, R.R., Lister, D.H., Clought, W.T., 1995. Phosphorus loads in a small groundwater-fed river during the 1989–1992 East Anglian drought. Water Res. 29, 2167–2173.
Abudi, I., Carmi, G., Berliner, P., 2012. Rainfall simulator for field runoff studies. J. Hydrol. 454–455, 76–81. doi:10.1016/j.jhydrol.2012.05.056
Iserloh, T., Fister, W., Seeger, M., Willger, H., Ries, J.B., 2012. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil Tillage Res. 124, 131–137. doi:10.1016/j.still.2012.05.016
Singh, R., Panigrahy, N., Philip, G., 1999. Modified rainfall simulator infiltrometer for infiltration, runoff and erosion studies. Agric. Water Manag. 41, 167–175. doi:10.1016/S0378-3774(99)00020-7
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).