Using of modern technologies for visualization of cultural heritage
DOI:
https://doi.org/10.14311/CEJ.2023.04.0041Keywords:
Photogrammetry, laser scanning, TLS, PLS, cultural heritage, UAV, Shush, Iraqi KurdistanAbstract
This paper explores the historical evolution and contemporary applications of photogrammetry and laser scanning in cultural heritage preservation, focusing on the restoration of the Shush synagogue in Iraqi Kurdistan. It traces the development of documentation techniques, highlighting photogrammetry's pivotal role and the impact of the digital revolution. The case study of Project Shush illustrates the practical use of geomatics techniques, advanced 3D modeling, and collaboration with NGOs and authorities. The methodology outlines the use of technologies like terrestrial laser scanners (BLK360, Zeb-Revo) and UAVs, emphasizing their mobility and accuracy. Results detail the project stages, showcasing the creation of a detailed 3D model and the use of Unreal Engine for visualization. The conclusion emphasizes the importance of 3D documentation in cultural heritage and celebrates the success of the Shush synagogue restoration as a testament to technological advancements in preservation. Our research has shown that the joining of different 3D object documentation technologies significantly improves the quality and speeds up the workflow. Comparison of partial point clouds in software Cloudcompare on a case study of a smaller historic building showed differences in the internal structure in centimeters, while for the external parts that were covered with vegetation the differences reached up to decimeters.
Downloads
References
Albertz, J., Wiedemann, Al. 1998. From Analogue To Digital Close-Range Photogrammetry. Online https://www.researchgate.net/publication/2332200_From_Analogue_To_Digital_Close-Range_Photogrammetry
Kovacs, F. 2015. Documentation of cultural heritage; techniques, potentials, and constraints. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W7. 207-214. 10.5194/isprsarchives-XL-5-W7-207-2015.
Sužiedelytė-Visockienė J, Bagdžiūnaitė R, Malys N, Maliene V. 2015. "Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage". Environmental Engineering and Management Journal. 14 (6): 1371–1381.
Marčiš, M., Barták, P., Valaška, D., Fraštia, M.,Trhan, O. 2016. USE OF IMAGE BASED MODELLING FOR DOCUMENTATION OF INTRICATELY SHAPED OBJECTS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B5. 327-334. 10.5194/isprs-archives-XLI-B5-327-2016.
Li, Y., Du, Y., Yang, M. et al. A review of the tools and techniques used in the digital preservation of architectural heritage within disaster cycles. Herit Sci 11, 199 (2023). https://doi.org/10.1186/s40494-023-01035-x
Shults, R.; Levin, E.; Aukazhiyeva, Z.; Pavelka, K.; Kulichenko, N.; Kalabaev, N.; Sagyndyk, M.; Akhmetova, 2023. N. A Study of the Accuracy of a 3D Indoor Camera for Industrial Archaeology Applications. Heritage, 6, 6240-6267. https://doi.org/10.3390/heritage6090327
Šedina, J.; Housarová, E.; Raeva, P. 2019. Using RPAS for the detection of archaeological objects using multispectral and thermal imaging European Journal of Remote Sensing., 52(sup1), 182-191. ISSN 2279-7254.
Bouček, T.; Stará, L.; Pavelka, K.; Pavelka, K., Jr. 2023. Monitoring of the Rehabilitation of the Historic World War II US Air Force Base in Greenland. Remote Sens., 15, 4323. https://doi.org/10.3390/rs15174323
Pavelka, K.; Matoušková, E.; Pavelka, K., Jr. 2023. Remarks on Geomatics Measurement Methods Focused on Forestry Inventory. Sensors, 23, 7376. https://doi.org/10.3390/s23177376
Grussenmeyer, P.,Alby, E., Assali, P.,Poitevin, V., Hullo, J.-F., Smigiel, E. 2011. Accurate Documentation in Cultural Heritage by merging TLS and high resolution photogrammetric data. Proceedings of SPIE - The International Society for Optical Engineering. 8085. 10.1117/12.890087.
Rodríguez-Gonzálvez, P., Jiménez Fernández-Palacios, B., Muñoz-Nieto, Á., Arias, P., González-Aguilera, D. 2017. Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sensing. 9. 189. 10.3390/rs9030189.
Di Stefano, F., Chiappini,S., Gorreja,A., Balestra, M., Pierdicca, R. 2021.Mobile 3D scan LiDAR: a literature review, Geomatics, Natural Hazards and Risk, 12:1, 2387-2429, DOI: 10.1080/19475705.2021.1964617
Kukko, A., Kaartinen, H.,Hyyppä, J., Chen, Y.W. 2012. Multiplatform Mobile Laser Scanning: Usability and Performance. SENSORS, 12, p. 11712-11733 DOI:10.3390/s120911712
Malinverni, E. S., Pierdicca, R., Bozzi, C.A., Bartolucci,D. "Evaluating a Slam-Based Mobile Mapping System: a Methodological Comparison for 3D Heritage Scene Real-Time Reconstruction" . 2018. Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 2018, pp. 265-270, doi: 10.1109/MetroArchaeo43810.2018.13684.
Gaafar, H. 2015. Virtual Reality: A Technological Tool for Preserving Built Heritage. Journal of Association of Arab Universities for Tourism and Hospitality. 12. 121-134. 10.21608/jaauth.2015.67444.
Pavelka, K.jr.; Raeva, P. 2019. Virtual museums - the future of historical monuments documentation and visualization In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.. International Society of Photogrammetry and Remote Sensing,. p. 903-908. XLII-2-W15. ISSN 2194-9034.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).