DIGITALIZATION OF IRRIGATION SYSTEMS FROM WATER MANAGEMENT MAPS
DOI:
https://doi.org/10.14311/CEJ.2024.02.0020Keywords:
Python, ArcGIS, Segmentation, Machine Learning, Water Management Map, Climate ChangeAbstract
With the increasing intensity of evapotranspiration caused by the changing climate, there is a growing need for water. This is especially true in locations where water-intensive vegetables are grown in intensive agriculture. Historically, irrigation systems were built in many intensive agriculture areas in Czechia, but they fell out of use, and evidence of their location was lost. However, Water Management Maps, which were only issued in paper form and have never been fully digitized, can provide evidence about the location of these large-scale irrigation systems. In this paper, we present a method for digitizing irrigation systems using the segmentation and classification of individual segments in the ArcGIS environment. The resulting raster is converted to polygons and is blended with the Land Parcel Identification System layer, resulting in a layer of irrigated land. Two statistical analyses were performed on this layer: statistics of the areas corresponding to the individual source watercourses, and statistics of the type of source.
Downloads
References
Báčová M., Krása J., 2016. Application of historical and recent aerial imagery in monitoring water erosion occurrences in Czech highlands. Soil and Water Research, vol. 11, no. 4, 267–276. doi: 10.17221/178/2015-SWR.
Buchtová I., Trnka Z., 2004. Situační a výhledová zpráva Zelenina. Prague: Ministerstvo zemědělství ČR (written in Czech).
SPÚ, Historická souvislost - Meliorační stavby. Státní pozemkový úřad. Available: https://www.spucr.cz/stavby-k-vodohospodarskym-melioracim-pozemku/historicka-souvislost (written in Czech).
Hosnedlová P., Zemědělci stárnou. Mladší generace nemají přístup k půdě a na zemědělství pohlížejí negativně. BusinessInfo.cz. Available: https://www.businessinfo.cz/clanky/zemedelci-starnou-mladsi-generace-nemaji-pristup-k-pude-a-na-zemedelstvi-pohlizeji-negativne/ (written in Czech).
Vorlíček P., Gandalovič: Chceme stimulovat generační výměnu v zemědělství. KIS Středočeského kraje. Available: https://www.kis-stredocesky.cz/2008/01/gandalovic-chceme-stimulovat-generacni-vymenu-v-zemedelstvi/ (written in Czech).
HEIS, HEIS VÚV - Informační stránky a data ke stažení. VÚV. Available: https://heis.vuv.cz/data/spusteni/pgstart.asp?pg=HTML_HEIS$ZVM50LN$stazeni&pgload=1&ico=icoopenid1.png&nadpis1=Z%25E1kladn%25ED vodohospod%25E1%25F8sk%25E1 mapa %25C8R 1:50 000: mapov%25E9 listy (archiv, 1986 - 1999)&nadpis2=Informa%25E8n%25ED str%25E1nky (written in Czech).
MŽP, 2015. Národní akční plán adaptace na změnu klimatu. Prague (written in Czech).
Fischer E. M., Sippel S., Knutti R., 2021. Increasing probability of record-shattering climate extremes. Nat Clim Chang, vol. 11, no. 8, 689–695. doi: 10.1038/s41558-021-01092-9.
Daňhelka J., 2015. Vyhodnocení sucha na území České republiky v roce 2015. Český Hydrometeorologický ústav. Prague (written in Czech).
Rozkošný M., Závlahy (VÚV TGM, v.v.i.). Accessed: Mar. 09, 2023. Available: https://heis.vuv.cz/data/webmap/datovesady/projekty/zavlahy/default.asp?lang=&tab=1&wmap= (written in Czech).
Eslamian S., Eslamian F., 2023. Handbook of Irrigation Hydrology and Management. Boca Raton: CRC Press. doi: 10.1201/9780429290114.
Kibret E. A., Abera A., Ayele W. T., Alemie N. A., 2021. Performance Evaluation of Surface Irrigation System in the Case of Dirma Small-Scale Irrigation Scheme at Kalu Woreda, Northern Ethiopia. Water Conservation Science and Engineering, vol. 6, no. 4, 263–274. doi: 10.1007/s41101-021-00119-8.
Pardo M. Á., Riquelme A. J., Jodar-Abellan A., Melgarejo J., 2020. Water and Energy Demand Management in Pressurized Irrigation Networks. Water (Basel), vol. 12, no. 7, 1878. doi: 10.3390/w12071878.
Trivedi A., Nandeha N., 2018. Small Scale Irrigation Development. Irrigation & Drainage Systems Engineering, vol. 07, no. 01. doi: 10.4172/2168-9768.1000206.
Conrad C., Lamers J. P. A., Ibragimov N., Löw F., Martius C., 2016. Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use. J Arid Environ, vol. 124, 150–159. doi: 10.1016/j.jaridenv.2015.08.008.
Larney F. J., 2018. Irrigated Crop Rotations. Agriculture & Agri-Food Canada, Lethbridge.
Chen T., Wang Z., Li G., Lin L., 2018. Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 6730–6737. doi: 10.1609/aaai.v32i1.12281.
Zhang W., Chen Q., Zhang W., He X., 2018. Long-range terrain perception using convolutional neural networks. Neurocomputing, vol. 275, 781–787. doi: 10.1016/j.neucom.2017.09.012.
Makantasis K., Karantzalos K., Doulamis A., Doulamis N., 2015. Deep supervised learning for hyperspectral data classification through convolutional neural networks. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 4959–4962. doi: 10.1109/IGARSS.2015.7326945.
Kozlowski P., Walas K., 2018. Deep neural networks for terrain recognition task. 2018 Baltic URSI Symposium (URSI), IEEE, 283–286. doi: 10.23919/URSI.2018.8406736.
Uhl J. H., Leyk S., Chiang Y. Y., Duan W., Knoblock C. A., 2020. Automated extraction of human settlement patterns from historical topographic map series using weakly supervised convolutional neural networks. IEEE Access, vol. 8, 6978–6996. doi: 10.1109/ACCESS.2019.2963213.
Chen Y., Carlinet E., Chazalon J., Mallet C., Duménieu B., Perret J., 2021. Combining Deep Learning and Mathematical Morphology for Historical Map Segmentation. Lecture Notes in Computer Science, 79–92. doi: 10.1007/978-3-030-76657-3_5.
Garcia-Molsosa A., Orengo H. A., Lawrence D., Philip G., Hopper K., Petrie C. A., 2021. Potential of deep learning segmentation for the extraction of archaeological features from historical map series. Archaeol Prospect, vol. 28, no. 2, 187–199. doi: 10.1002/ARP.1807.
Kulhavý Z., Kulhavý F., 2008. Navrhování hydromelioračních staveb. Praha: Informační centrum ČKAIT.
Jajodia T., Garg P., 2019. Image Classification-Cat and Dog Images. International Research Journal of Engineering and Technology. [Online]. Available: www.irjet.net
Cukierski W., Dogs vs. Cats. Kaggle. [Online]. Available: https://www.kaggle.com/c/dogs-vs-cats
Elson J., Douceur J. R., Howell J., Saul J., 2007. Asirra: A CAPTCHA that exploits interest-aligned manual image categorization. Proceedings of the ACM Conference on Computer and Communications Security, 366–374. doi: 10.1145/1315245.1315291.
Sermanet P., Eigen D., Zhang X., Mathieu M., Fergus R., LeCun Y., 2013. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings. doi: https://doi.org/10.48550/arXiv.1312.6229.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Stavební obzor - Civil Engineering Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).