FRACTURE ENERGY OF UNSTABILIZED RAMMED EARTH: INFLUENCE OF CLAY TYPE AND CONTENT IN THE MIXTURE

Authors

  • Barbora Mužíková Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague
  • Pavel Padevět
  • Tereza Plaček Otcovská

DOI:

https://doi.org/10.14311/

Keywords:

Rammed earth, Clay, Fracture Energy, Three-point bending test, Sustainable construction

Abstract

This study explores the fracture energy of unstabilized rammed earth, focusing on the influence of different types and amounts of clay within the mixtures. Utilizing a three-point bending test, this research evaluates the fracture energy of rammed earth to better understand how variations in clay type and content affect its structural integrity. The findings reveal significant differences in fracture energy values correlated with the clay's molecular structure and the interlayer chemical bonds. Clays such as illitic-kaolinitic, montmorillonite, and illite were tested, each demonstrating unique responses to mechanical stress based on their respective chemical bonds. Mixtures containing illitic-kaolinitic clay exhibited the highest fracture energy values, attributed to the presence of kaolinite due to its robust interlayer bonds. The results contribute insights into the selection and optimization of rammed earth materials for sustainable construction, aligning with the growing emphasis on ecological and durable building resources.

Downloads

Download data is not yet available.

References

NOAA National Centers for Environmental Information. Monthly Global Climate Report for November 2023. 2024-09-01. [Online]. Available at: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202311

World Meteorological Organization. 2023 shatters climate records, with major impacts. 2024-09-01. [Online]. Available at: https://wmo.int/news/media-centre/2023-shatters-climate-records-major-impacts

Copernicus, Europe's eyes on Earth. Global Climate Highlights 2023: Copernicus - 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit. 2024-09-01. [Online]. Available at: https://climate.copernicus.eu/copernicus-2023-hottest-year-record

McHenry, Paul Graham. Adobe and rammed earth buildings: design and construction. Tucson: University of Arizona Press, 1989. ISBN: 0816511241. [Online]. Available at: https://archive.org/details/adoberammedearth0000mche/mode/2up

Reddy, B. V. V. Compressed Earth Block & Rammed Earth Structures. Singapore: Springer Nature Singapore, 2022. Springer Transactions in Civil and Environmental Engineering. ISBN 9789811678776. Available at: [https://books.google.cz/books?id=T6deEAAAQBAJ].

Minke, Gernot. Building with Earth: Design and Technology of a Sustainable Architecture. Birkhäuser - Publisher for Architecture, 2006. ISBN 9783764374778.

Suske, Petr. Hlinené domy novej generácie. Alfa, 1991. ISBN 8005008945.

Žabičková, Ivana. Hliněné stavby. Nakladatelství ERA, 2002. ISBN 8086517217.

Vejpustek, Zdeněk; Muller, Jan; Žabičková, Ivana; Bolcek, Roman. Nepálená hlína. INTRO, 2022, vol. 19. ISSN 2570-7744.

Morton, Tom; Little, Becky. Building with Earth in Scotland: Innovative Design and Sustainability. Scottish Executive Central Research Unit, 2001. Central Research Unit papers. ISBN 978-1-86081-978-0.

Nk'Mip Desert Cultural Centre. Southeast Wyoming Welcome Center. [online]. Available at: [https://sirewall.com/portfolio/nkmip-desert-cultural-centre/]. Accessed: 15.5.2023.

Mutl, Jan. Realizace - Rodinný dům v Plavech. [online]. Available at: [https://janmutl.cz/realizace/].

Houben, Hugo and Guillaud, Hubert. Earth Construction: A Comprehensive Guide. ITDG Publishing, 1994. ISBN 1-85339-193-X.

Keable, Julian and Keable, Rowland. Rammed Earth Structures. Practical Action Publishing, 1996. ISBN 978-1-85339-727-1.

Walker, Peter and Standards Australia. HB 195 -- 2002: The Australian Earth Building Handbook. 2002. ISBN 0-7337-4000-6. Available at: [https://www.saiglobal.com/PDFTemp/Previews/OSH/as/misc/handbook/HB195.pdf].

Council New Zealand. NZ 4297 (1998): Engineering design of earth buildings. [online]. 1998 [cit. 2023-05-22]. Available from: http://www.eastue.org/project/linea-adobe/norme/NZD4297-1998-Engineering_Design_of_Earth_Buildings.pdf

Construction Industries Division of the Regulation and Licensing Department. HOUSING AND CONSTRUCTION: Building Codes General: 2015 New Mexico Earthen Building Materials Code. [online]. 2016 [cit. 2023-05-22]. Available from: https://www.srca.nm.gov/parts/title14/14.007.0004.html[13]Standards

Deutscher Normenausschuss Fachnormenausschuss Bauwesen. Lehmbau: Ausführung von Lehmbauten : Richtlinien : DIN 18954. Beuth, 1956.

Schweizerischer Ingenieur- und Architekten-Verein. D 0111: Regeln zum Bauen mit Lehm. 1994. Available at: [https://www.iglehm.ch/application/files/2515/1696/9453/SIA_D0111_Lehmbauregeln.pdf].

Weiss, Zdeněk, and Kužvart, Miloš. Jílové minerály a jejich nanostruktura a využití. Prague: Karolinum, 2005. ISBN 80-246-0868-5.

Melka, Karel and Šťastný, Martin. Encyklopedický přehled jílových a příbuzných minerálů. Praha: Academia, 2014. ISBN 978-80-200-2369-8.

Žídek, Lukáš. Strukturní biologie. 2022. [online] [cit. 2023-05-12]. Dostupné z: https://web.ncbr.muni.cz/~lzidek/C9530/skripta.pdf

Otcovská, Tereza; Mužíková, Barbora a Padevět, Pavel. Methylene blue test and adsorption capacity of clays. Acta Polytechnica CTU Proceedings, 2022, 34, s. 63. DOI: 10.14311/APP.2022.34.0063

Plaček Otcovská, Tereza. Analýza složení nepálené hlíny zkouškou methylenovou modří a korelace s výslednými vlastnostmi dusané hlíny. Disertační práce. ČVUT v Praze, 2021.

Mitchell, James K. a Soga, Kenichi. Fundamentals of Soil Behavior. John Wiley & Sons, Inc., 2005. ISBN 978-0-471-46302-7.

Bednář, Radek. Stanovení závislosti meze tekutosti a plasticity zemin na typu zeminy. 2016. Bakalářská práce. VŠB Ostrava.

Otcovská, Tereza, Mužíková, Barbora, and Padevět, Pavel. Mechanical Properties of Rammed Earth with Respect to Clay Mixture Composition. Acta Polytechnica, 2019, vol. 59, pp. 372-383. DOI:10.14311/AP.2019.59.0372.

el Nabouch, Ranime. Mechanical behavior of rammed earth walls under Pushover tests. Grenoble: Université Grenoble Alpes, 2016. Available from: https://www.theses.fr/2017GREAA014.pdf

Gil-Martín, Luisa María, Fernández-Ruiz, Manuel Alejandro and Hernández-Montes, Enrique. Mechanical characterization and elastic stiffness degradation of unstabilized rammed earth. Journal of Building Engineering. 2022, 56, 104805. ISSN 2352-7102. DOI 10.1016/j.jobe.2022.104805

Ramezanpour, Moein, Eslami, Abolfazl and Ronagh, Hamid. Seismic performance of stabilised/unstabilised rammed earth walls. Engineering Structures. 2021, 245, 112982. ISSN 0141-0296. DOI 10.1016/j.engstruct.2021.112982

Liu, Qiang and Tong, Liping. Engineering properties of unstabilized rammed earth with different clay contents. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2017, 32, 914-920. DOI 10.1007/s11595-017-1690-y

Toufigh, Vahab and Kianfar, Ehsan. The effects of stabilizers on the thermal and the mechanical properties of rammed earth at various humidities and their environmental impacts. Construction and Building Materials. 2019, 200, 616-629. ISSN 0950-0618. DOI 10.1016/j.conbuildmat.2018.12.050

Bui, Quoc-Bao; Bui, Tan-Trung; Tran, Mai-Phuong; Bui, Thi-Loan Assessing the Seismic Behavior of Rammed Earth Walls with an L-Form Cross-Section. Sustainability, vol. 11, issue 5, 2019.

Arto, Ignacio; Gallego, Rafael; Cifuentes, Héctor; Puertas, Esther; Gutiérrez-Carrillo, M.L. Fracture Behavior of Rammed Earth in Historic Buildings. Construction and Building Materials, vol. 289, 2021.

Silva, Rui; Oliveira, Daniel; Schueremans, Luc; Lourenco, Paulo; Miranda, Tiago. Modelling of the Structural Behaviour of Rammed Earth Components. Proceedings of the 9th International Conference on Civil, Structural and Environmental Engineering Computing, 2014.

Bažant, Zdeněk, Le, Jia-Liang, a Salviato, Marco. 2021. Quasibrittle Fracture Mechanics and Size Effect: A First Course. Oxford: Oxford University Press. ISBN 978-0-19-284624-2. Dostupné z: DOI:10.1093/oso/9780192846242.001.0001

Shah, S. a Carpinteri, A. 1991. Fracture Mechanics Test Methods For Concrete. London: Taylor and Francis. ISBN 0-412-41100-8.

Miccoli, Lorenzo; Oliveira, Daniel; Silva, Rui; Mueller, Urs; Schueremans, Luc. Static Behaviour of Rammed Earth: Experimental Testing and Finite Element Modelling. Materials and Structures, vol. 48, 2014.

Corbin, Andrew; Augarde, Charles. Fracture Energy of Stabilised Rammed Earth. Procedia Materials Science, vol. 3, 2014.

Hussaini, Sayed Mohammad Sajad; Toufigh, Vahab. Strength and Fracture Behavior of Rammed-Earth Materials. Journal of Materials in Civil Engineering, vol. 31, issue 10, 2019.

Bui, T.-T., Bui, Q.-B., Limam, A., & Maximilien, S. (2014). Failure of rammed earth walls: From observations to quantifications. Construction and Building Materials, 51, 295-302. DOI 10.1016/j.conbuildmat.2013.10.053

Bui, Q.-B., & Morel, J.-C. (2009). Assessing the anisotropy of rammed earth. Construction and Building Materials, 23(9), 3005-3011. DOI: 10.1016/j.conbuildmat.2009.04.011

Padevět, Pavel; Otcovská, Tereza; Mužíková, Barbora. Material Properties of RE Prepared from Illitic-Kaolinitic clay. WSEAS Transactions on Applied and Theoretical Mechanics, 2018, 13: 181-186.

Jirásek, Milan; Zeman, Jan. Přetváření a porušování materiálů. Prague: Nakladatelství ČVUT, 2006. pp. 111-150. ISBN 80-01-03555-7.

Vydra, Vítězslav. Habilitation thesis: Fracture characteristics of concrete exposed to high temperatures. Czech Technical University in Prague, 2005. Available from: https://people.fsv.cvut.cz/~vydra/files/VydraThesis.pdf [accessed 2023-07-28].

Petersson, P.-E. Crack growth and development of fracture zones in plain concrete and similar materials. Lund Institute of Technology (Sweden), 1981. Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/13/668/13668228.pdf.

Downloads

Published

2024-10-31

Issue

Section

Articles

How to Cite

FRACTURE ENERGY OF UNSTABILIZED RAMMED EARTH: INFLUENCE OF CLAY TYPE AND CONTENT IN THE MIXTURE . (2024). Stavební Obzor - Civil Engineering Journal, 33(3), 420-434. https://doi.org/10.14311/