Chance constrained stochastic programming in design of a frame structure

Authors

  • Eva Mrázková Faculty of Mechanical Engineering, Brno University of Technology

DOI:

https://doi.org/10.14311/CEJ.2025.01.0001

Keywords:

Optimal engineering design, Stochastic programming, Chance constrained optimization, Ordinary differential equations

Abstract

A civil engineering problem concerning an optimal design of a loaded frame structure with random Young's modulus is discussed. The developed multi-criteria optimization model involves ODE-type constraints and also one chance constraint related to the structure’s reliability. A computational scheme for this type of problems is proposed using the finite difference method for the approximation of the ODE constraint and the scenario-based approach for a random variable approximation. The chance constraint is handled by two approaches – analytical approach and penalty reformulation. An a posteriori check of satisfying the chance constraint is made and the upper bounds of the obtainable reliability are computed.

Downloads

Download data is not yet available.

References

Plšek J., Štěpánek P., Popela P., 2007. Deterministic and reliability based structural optimization of concrete cross-section. Jornal of Advanced Concrete Technology, vol. 5: 63–74. DOI:10.3151/jact.5.63

Laníková I., Štěpánek P., Šimůnek P., 2014. Optimized design of concrete structures considering environmental aspects. Advances in Structural Engineering, vol. 17, no. 4: 495-511.

DOI:10.1260/1369-4332.17.4.495

Venclovský J., Štěpánek P., Laníková I., 2018. Stochastic optimization of reinforces concrete elements using heuristic algorithm. In: Proceedings of the 24th Concrete Days 2017. Solid State Phenomena, vol. 272: 262-269. DOI:10.4028/www.scientific.net/SSP.272.262

Žampachová E., Popela P., Mrázek M., 2010. Optimum beam design via stochastic programming. Kybernetika, vol. 46, no. 3: 571–582

Žampachová E., Popela P., 2012. Two approaches to multi-criteria stochastic programming in beam design problem. In: Proceedings of the 18th International Conference of Soft Computing MENDEL 2012. Mendel Journal series: 393-397

Žampachová E., Mrázek M., 2010. Stochastic optimization in beam design and its reliability check. In: Proceedings of the 16th International Conference of Soft Computing MENDEL 2010. Mendel Journal series: 405-410

Kůdela J., Popela P., 2018. Chance constrained optimal beam design: Convex reformulation and probabilistic robust design. Kybernetika, vol. 54, no. 6: 1201-1217. DOI:10.14736/kyb-2018-6-1201

Steuer R.E., 1986. Multiple Criteria Optimization: Theory, Computation and Application (New York: John Wiley) 546 pp. DOI:10.1002/oca.4660100109

Oberg E., Jones F.D., Horton H., Ryffel H., McCauley C., 2020. Machinery’s Handbook (Industrial Press). 2996 pp.

Ruszczynski A., Shapiro, A. (eds.), 2003. Handbooks in Operations Research and Management Science, vol.10: Stochastic Programming (Amsterdam: Elsevier) 682 pp.

Birge J., Louveaux F., 1997. Introduction to Stochastic Programming (New York: Springer) 485 pp.

DOI:10.1007/978-1-4614-0237-4

Mathews J.H., Fink K.D., 2004. Numerical Methods using Matlab (New Jersey: Pearson Prentice Hall) 696 pp.

Branda M., Dupačová J., 2012. Approximations and contamination bounds for probabilistic programs. Annals of Operations Research, vol. 193, no.1: 3-19. DOI: 10.1007/s10479-010-0811-1

Bazaraa M.S., Sherali H.D., Shetty C.M., 2005. Nonlinear programming: Theory and Algorithms. (New York: Wiley and Sons) 853 pp. DOI:10.1002/0471787779

Luedtke J., Ahmed S., 2008. A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, vol. 19, no. 2: 674-699. DOI:10.1137/070702928

Pagnoncelli B.K., Ahmed S., Shapiro A., 2009. Sample average approximation method for chance constrained programming: Theory and applications. Journal of Optimization Theory and Applications, vol. 142: 399-416. DOI:10.1007/s10957-009-9523-6

Downloads

Published

2025-04-30

Issue

Section

Articles

How to Cite

Chance constrained stochastic programming in design of a frame structure. (2025). Stavební Obzor - Civil Engineering Journal, 34(1), 1-11. https://doi.org/10.14311/CEJ.2025.01.0001