Augmented Reality as a 3D Land Cover Visualisation Technique
DOI:
https://doi.org/10.14311/CEJ.2025.01.0003Keywords:
Augmented reality, AR, Land Cover, Visualisation, Old Maps, City Engine, UnityAbstract
Augmented Reality (AR) is an established technique for both 2D and 3D visualisations in several fields such as sports, entertainment or culture (museums). However, in cartography or in GIS, it is still considered as a minor niche visualisation technique. Therefore, the aim of this paper is to present AR as a 3D visualisation method for land cover development. The presented output is a part of a mobile application for Android. Land cover GIS data obtained from historical and contemporary large-scale maps are processed using City Engine, resulting in the creation of several 3D models viewed via augmented reality. Procedural modelling in City Engine is used to visualise 3D land cover data such as buildings or forests (including coniferous, deciduous and mixed). Other land cover types (e.g. arable land, grassland or roads) are displayed as 2D textures. In this way, the user can experience an innovative perspective of land cover changes over time in a study area of Chudenice (a village in the southwest of Czechia). The 3D land cover maps are presented in two time periods (1837 and 2023). The 3D models are accompanied by a map legend, scale, north arrow and title, so that the user can keep track of the current model without the need for additional essential map information.
Downloads
References
Shalaby, A. A., R.R. Ali & A. Gad. 2012. Urban sprawl impact assessment on the agricultural land in Egypt using remote sensing and GIS: a case study, Qalubiya Governorate. Journal of Land Use Science. 7(3), 261-273. ISSN 1747-423X. doi:10.1080/1747423X.2011.562928
Tortora, A., D. Statuto & P. Picuno. 2015. Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy. 42, 71-82. ISSN 02648377. doi:10.1016/j.landusepol.2014.06.027
Albright, M. G., C. Vickery, R. Bower & J. E. Quinn. 2023. Patterns of land use change, land governance, and the supply of ecosystem services in a multifunctional landscape: A case study from Upstate SC, USA. Journal of Land Use Science. 2023-12-31, 18(1), 284-295. ISSN 1747-423X. doi:10.1080/1747423X.2023.2234903
Skokanová, H., M. Havlíček, R. Borovec, et al. 2012. Development of land use and main land use change processes in the period 1836–2006: case study in the Czech Republic. Journal of Maps. 8(1), 88-96. ISSN 1744-5647. doi:10.1080/17445647.2012.668768
Soltani, P. & A. H. P. Morice. 2020. Augmented reality tools for sports education and training. 155. ISSN 03601315. doi:10.1016/j.compedu.2020.103923
Li, J., E. D. Van Der Spek, L. Feijs, F. Wang & J. Hu. 2017. Augmented Reality Games for Learning: A Literature Review. In: Distributed, Ambient and Pervasive Interactions. Cham: Springer International Publishing. pp. 612-626. Lecture Notes in Computer Science. ISBN 978-3-319-58696-0. doi:10.1007/978-3-319-58697-7_46
Rauschnabel, P. A., A. Rossmann & M. C. Tom Dieck. 2017. An adoption framework for mobile augmented reality games: The case of Pokémon Go. Computers in Human Behavior. 76, 276-286. ISSN 07475632. doi:10.1016/j.chb.2017.07.030
Magnenat, S., M. Gross, R. W. Sumner, et al. 2015. Live Texturing of Augmented Reality Characters from Colored Drawings. IEEE Transactions on Visualization and Computer Graphics. 2015-11-15, 21(11), 1201-1210. ISSN 1077-2626. doi:10.1109/TVCG.2015.2459871
Chalvatzaras, D., N. Yiannoutsou, C. Sintoris & N. Avouris. 2014. Do you remember that building? Exploring old Zakynthos through an augmented reality mobile game. In: 2014 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL2014). IEEE, pp. 222-225. ISBN 978-1-4799-4742-3. doi:10.1109/IMCTL.2014.7011136
Noh, Z., M. S. Sunar & Z. Pan. 2009. A Review on Augmented Reality for Virtual Heritage System. In: Learning by Playing. Game-based Education System Design and Development. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 50-61. Lecture Notes in Computer Science. ISBN 978-3-642-03363-6. doi:10.1007/978-3-642-03364-3_7
Pavelka jr., K. & J. Pacina. 2023. Using of modern technologies for visualization of cultural heritage. Stavební obzor - Civil Engineering Journal. 2023-12-31, 32(4), 549-563. ISSN 1805-2576. doi:10.14311/CEJ.2023.04.0041
Binti Mat Sah, S. B., N. Teck Chyan & S. Binti Hisham. 2014. Interactive augmented reality art book to promote Malaysia traditional game. In: 2014 International Conference on Computer, Communications, and Control Technology (I4CT). IEEE, pp. 203-208. ISBN 978-1-4799-4555-9. doi:10.1109/I4CT.2014.6914175
Wüest, R. & S. Nebiker. 2018. Geospatial Augmented Reality for the interactive exploitation of large-scale walkable orthoimage maps in museums. In: Proceedings of the ICA. pp. 1-6. ISSN 2570-2092. doi:10.5194/ica-proc-1-124-2018
Eckert, M., J. S. Volmerg & C. M. Friedrich. 2019. Augmented Reality in Medicine: Systematic and Bibliographic Review. JMIR mHealth and uHealth. 7(4). ISSN 2291-5222. doi:10.2196/10967
Saidin, N. F., N. D. Abd Halim & N. Yahaya. 2015. A Review of Research on Augmented Reality in Education: Advantages and Applications. International Education Studies. 2015-06-25, 8(13). ISSN 1913-9039. doi:10.5539/ies.v8n13p1
Tang, J. K.T., W. Lau, K. Chan & K. To. 2014. AR interior designer: Automatic furniture arrangement using spatial and functional relationships. In: . IEEE, pp. 345-352. ISBN 978-1-4799-7227-2. doi:10.1109/VSMM.2014.7136652
De Pace, F., F. Manuri & A. Sanna. 2018. Augmented Reality in Industry 4.0. American Journal of Computer Science and Information Technology. 06(01). ISSN 23493917. doi:10.21767/2349-3917.100017
Bottani, E. & G. Vignali. 2019. Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions. 2019-03-04, 51(3), 284-310. ISSN 2472-5854. doi:10.1080/24725854.2018.1493244
Dědková, P. & S. Popelka. 2015. Virtual 3D Restoration of an Extinct Village and Its Eye-Tracking Assessment. Journal of Mobile Multimedia. 11(3), 181-192. https://journals.riverpublishers.com/index.php/JMM/article/view/4497
Pacina, J., J. Cajthaml, D. Kratochvílová, J. Popelka, V. Dvořák & T. Janata. 2022. Pre‐dam valley reconstruction based on archival spatial data sources: Methods, accuracy, and 3D printing possibilities. Transactions in GIS. 26(1), 385-420. ISSN 1361-1682. doi:10.1111/tgis.12854
State Administration of Land Surveying and Cadastre [online]. © 2023 [cit. 2024-06-14]. https://cuzk.cz/en
Carmigniani, J., B. Furht, M. Anisetti, P. Ceravolo, E. Damiani & M. Ivkovic. 2011. Augmented reality technologies, systems and applications. Multimedia Tools and Applications. 51(1), 341-377. ISSN 1380-7501. doi:10.1007/s11042-010-0660-6
Milgram, P. & F. Kishino. 1994. A Taxonomy of Mixed Reality Visual Displays. IEICE TRANSACTIONS on Information and Systems. E77-D(12), 1321-1329. ISSN 0916-8532.
Skarbez, R., M. Smith & M. C. Whitton. 2021. Revisiting Milgram and Kishino's Reality-Virtuality Continuum. Frontiers in Virtual Reality. 2021-3-24, 2. ISSN 2673-4192. doi:10.3389/frvir.2021.647997
Tremosa, L. 2024. Beyond AR vs. VR: What is the Difference between AR vs. MR vs. VR vs. XR? Interaction Design Foundation [online]. [cit. 2024-05-15]. https://www.interaction-design.org/literature/article/beyond-ar-vs-vr-what-is-the-difference-between-ar-vs-mr-vs-vr-vs-xr
Peddie, J. 2017. Types of Augmented Reality. In: Augmented Reality. Springer Cham, pp. 29–46. ISBN 978-3-319-54502-8. https://link.springer.com/chapter/10.1007/978-3-319-54502-8_2
Syed, T. A., M. S. Siddiqui, H. B. Abdullah, S. Jan, A. Namoun, A. Alzahrani, A. Nadeem & A. B. Alkhodre. 2023. In-Depth Review of Augmented Reality: Tracking Technologies, Development Tools, AR Displays, Collaborative AR, and Security Concerns. Sensors. 23(1). ISSN 1424-8220. doi:10.3390/s23010146
Dargan, S., S. Bansal, M. Kumar, A. Mittal & K. Kumar. 2023. Augmented Reality: A Comprehensive Review. Archives of Computational Methods in Engineering. 30(2), 1057-1080. ISSN 1134-3060. doi:10.1007/s11831-022-09831-7
Rohs, M., J. Schöning, M. Raubal, G. Essl & A. Krüger. 2007. Map navigation with mobile devices. Proceedings of the 9th international conference on Multimodal interfaces. New York, NY, USA: ACM, 2007-11-12, 146-153. ISBN 9781595938176. doi:10.1145/1322192.1322219
Gill, L. & E. Lange. 2015. Getting virtual 3D landscapes out of the lab. Computers, Environment and Urban Systems. 54, 356-362. ISSN 01989715. doi:10.1016/j.compenvurbsys.2015.09.012
Brejcha, J., M. Lukáč, Y. Hold-Geoffroy, O. Wang & M. Čadík. 2020. LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors. In: Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020-10-07, pp. 295-312. Lecture Notes in Computer Science. ISBN 978-3-030-58525-9. doi:10.1007/978-3-030-58526-6_18
Census 2021. Czech Statistical Office [online]. 2021 [cit. 2024-05-28]. https://scitani.gov.cz/
Kuča, K. 2015. Krajinná památková zóna Chudenicko. In: Krajinné památkové zóny České republiky. Praha: Národní památkový ústav. pp. 188-193. ISBN 978-80-7480-045-0.
Šantrůčková, M. 2014. Krajinářská tvorba Jana Rudolfa Černína: Vznik a vývoj parků v Krásném Dvoře, Jemčině, Petrohradě a Chudenicích. Praha: Karolinum, 316 p. ISBN 978-80-246-2397-9.
Drnek, J., O. Brachtel & J. Kubec. 2022. Chudenice – městečko pod sv. Wolfgangem – I. díl. Netoliko. ISBN 978-80-907142-1-2.
Halik, Ł. & Ł. Wielebski. 2023. Usefulness of Plane-Based Augmented Geovisualization—Case of “The Crown of Polish Mountains 3D.” ISPRS International Journal of Geo-Information. 12(2). ISSN 2220-9964. doi:10.3390/ijgi12020038
Lázna, R. 2023. Geovizualizace založené na integraci 3D fyzických modelů terénu a rozšířené reality. Olomouc. Diploma thesis. Palacký University in Olomouc, Faculty of Science, Department of Geoinformatics.
Adedokun-Shittu, N. A., A. H. Ajani, K. M. Nuhu & A. K. Shittu. 2020. Augmented reality instructional tool in enhancing geography learners academic performance and retention in Osun state Nigeria. Education and Information Technologies. 25(4), 3021-3033. ISSN 1360-2357. doi:10.1007/s10639-020-10099-2
Elmqaddem, N. 2019. Augmented Reality and Virtual Reality in Education. Myth or Reality? International Journal of Emerging Technologies in Learning (iJET). 2019-02-14, 14(03), 234-242. ISSN 1863-0383. doi:10.3991/ijet.v14i03.9289
Zhang, G., J. Gong, Y. Li, et al. 2020. An efficient flood dynamic visualization approach based on 3D printing and augmented reality. International Journal of Digital Earth. 2020-11-01, 13(11), 1302-1320. ISSN 1753-8947. doi:10.1080/17538947.2019.1711210
Schnürer, R., C. Dind, S. Schalcher, P. Tschudi & L. Hurni. 2020. Augmenting Printed School Atlases with Thematic 3D Maps. Multimodal Technologies and Interaction. 4(2). ISSN 2414-4088. doi:10.3390/mti4020023
Halik, Ł. 2012. The analysis of visual variables for use in the cartographic design of point symbols for mobile Augmented Reality applications. Geodesy and Cartography. 61(1), 19–30.
Cajthaml, J. 2011. Methods of Georeferencing Old Maps on the Example of Czech Early maps. In: Proceedings of the 25th International Cartographic Conference. ISBN 978-1-907075-05-6.
Cajthaml, J. 2013. Polynomial Georeferencing Method for Old Map Series. In: 13th International Multidisciplinary Scientific GeoConference SGEM 2013. pp. 859–866. ISBN 978-1-62993-275-0. ISSN 1314-2704.
Janata, T. & J. Cajthaml. 2021. Georeferencing of Multi-Sheet Maps Based on Least Squares with Constraints—First Military Mapping Survey Maps in the Area of Czechia. Applied Sciences. 11(1). ISSN 2076-3417. doi:10.3390/app11010299
Balletti, C. 2006. Georeference in the analysis of the geometric content of early maps. E-Perimetron. 1(1), 32-39.
Copernicus. 2019. CORINE Land Cover 2018 (vector/raster 100 m), Europe, 6-yearly. https://land.copernicus.eu/en/products/corine-land-cover/clc2018
Janovský, M, Tobiáš, P. & V. Cehák. 2022. 3D Visualisation of the Historic Pre-Dam Vltava River Valley—Procedural and CAD Modelling, Online Publishing and Virtual Reality. ISPRS International Journal of Geo-Information. 11(7). ISSN 2220-9964. doi:10.3390/ijgi11070376
Watson, B., P. M, O. Veryovka, A. Fuller, P. Wonka & C. Sexton. 2008. Procedural Urban Modeling in Practice. IEEE Computer Graphics and Applications. 28(3), 18-26. ISSN 0272-1716. doi:10.1109/MCG.2008.58
Kitsakis, D., E. Tsiliakou, T. Labropoulos & E. Dimopoulou. 2017. Procedural 3D Modelling for Traditional Settlements. The Case Study of Central Zagori. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLII-2/W3, 369-376. ISSN 2194-9034. doi:10.5194/isprs-archives-XLII-2-W3-369-2017
Janečka, K. & L. Váša. 2017. Compression of 3D Geographical Objects at Various Level of Detail. In: The Rise of Big Spatial Data. Cham: Springer International Publishing. 2017-10-15, pp. 359-372. Lecture Notes in Geoinformation and Cartography. ISBN 978-3-319-45122-0. doi:10.1007/978-3-319-45123-7_26
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Stavební obzor - Civil Engineering Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).