Aplicability of Magnesium Phosphate Cement for Bioreceptive Concrete Tiles

Authors

  • Michaela Frantová ČVUT,FSV,Katedra betonových a zděných konstrukcí
  • Petr Štemberk ČVUT,FSV,Katedra betonových a zděných konstrukcí
  • Václav Wudi ČVUT,FSV,Katedra betonových a zděných konstrukcí
  • Mária Husarčíková ČVUT,FSV,Katedra betonových a zděných konstrukcí

DOI:

https://doi.org/10.14311/CEJ.2024.04.0034

Keywords:

Bioreceptivity, Bio-active concrete, Low-pH cementitious material, Magnesium phosphate cement, Porosity

Abstract

The pressing need for innovative green solutions in urban environments is evident. This study explores a novel concept of integrating green areas directly onto structural surfaces to enhance urban infrastructure with real floral life. Specifically, the research focuses on the application of newly developed bioreceptive concrete, which is engineered to promote the growth of microorganisms, including mosses, lichens, and algae, on its surface. To achieve optimal bioreceptivity, the concrete's properties were carefully modified by changing the mix design and using Magnesium Phosphate Cement instead of traditional Ordinary Portland Cement. This substitution resulted in a significant reduction in pH, creating a more favorable environment for the life of plants and microorganisms. Additionally, an optimal formulation was developed with a suitable grain size distribution to achieve the desired porosity, which is critical for water retention and microbial establishment. This bioreceptive concrete was tested as an additional layer on top of normal OPC concrete which was used to manufacture to the supporting structure. The concrete properties were carefully optimized to enhance bioreceptivity by altering the mix design and employing a different type of hydraulic binder to meet the conditions necessary for biological growth. The study primarily examines two key properties of bioreceptive concrete: pH and porosity.

Downloads

Download data is not yet available.

References

Growing Green Guide, A Guide to Green Roofs, Walls and Facades in Melbourne and Victoria, Australia. [online]. 2014 [cit. 2019-04-07].http://www.growinggreenguide.org/

Manso, M., Castro-Gomes, J., 2015. Green wall systems: A review of their characteristics. Renewable and Sustainable Energy Reviews, vol. 41, p.863-871. https://doi.org/10.1016/j.rser.2014.07.203

Perez G., Coma J., Martorell I., Cabeza L.F., 2014. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews, vol. 39, p. 140-141. ISSN 1364-0321, https://doi.org/10.1016/j.rser.2014.07.055

Giacomello E., Valagussa M., 2015. Vertical Greenery: Evaluating the High-Rise Vegetation of the Bosco Verticale, Milan, Council on Tall Buildings and Urban Habitat, Chicago, ISBN 978-0-939493-42-5.

https://en.wikipedia.org/wiki/CaixaForum_Madrid#/media/File:CaixaForum_Madrid_ (Espa%C3%B1a)_01.jpg

https://www.archiweb.cz/en/b/tower-flower

https://en.wikipedia.org/wiki/Bosco_Verticale#/media/File:Bosco_Verticale_Milano.jpg

GhaffarianHoseini A., Dahlan N., Berardi U., GhaffarianHoseini A., Makaremi N., GhaffarianHoseini M., 2013. Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renewable and Sustainable Energy Reviews, vol. 25, p.1-17. ISSN 1364-0321, https://doi.org/10.1016/j.rser.2013.01.010.

Ottelé M., 2011. The green building envelope: Vertical greening. Doctoral thesis. Technische Universiteit Delft. ISBN 9789090262178, http://resolver.tudelft.nl/uuid:1e38e393-ca5c-45af-a4fe-31496195b88d

Guillitte O., 1995. Bioreceptivity: a new concept for building ecology studies. Science of The Total Environment, vol. 167(1-3), p.215-220, ISSN 0048-9697, https://doi.org/10.1016/0048-9697(95)04582-L.

Miller A., Sanmartín P., Pereira-Pardo L., Dionísio A., Saiz-Jimenez C., Macedo M., Prieto B. 2012. Bioreceptivity of building stones: A review. Science of The Total Environment, vol. 426, p.1-12, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2012.03.026.

Bellinzoni A., Caneva G., Ricci S., 2003. Ecological trends in travertine colonisation by pioneer algae and plant communities. International Biodeterioration & Biodegradation, vol. 51(3), p.203-210, ISSN 0964-8305, https://doi.org/10.1016/S0964-8305(02)00172-5.

Walling S., Provis J., 2016. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?. Chemical Reviews, vol. 116(7), p.4170-4204, ISSN 0009-2665, https://doi.org/10.1021/acs.chemrev.5b00463.

Iyengar S., Al-Tabbaa A., 2008. Developmental Study of a Low-pH Magnesium Phosphate Cement for Environmental Applications. Environmental technology, vol. 28(12), p.1387-1401, ISSN 0959-3330, https://doi.org/10.1080/09593332808618899.

Feng H., Chen G., Gao D., Zhao, K., Zhang C., 2018. Mechanical Properties of Steel Fiber-Reinforced Magnesium Phosphate Cement Mortar. Advances in Civil Engineering, vol. 2018, p.1-11, , https://doi.org/10.1155/2018/3978318.

Yang Q., Zhu B., Zhang S., Wu X., 2000. Properties and applications of magnesia–phosphate cement mortar for rapid repair of concrete. Cement and Concrete Research, vol. 30(11), p.1807-1813, ISSN 0008-8846, https://doi.org/10.1016/S0008-8846(00)00419-1.

Yang N., Shi C., Yang J., Chang Y., 2014. Research Progresses in Magnesium Phosphate Cement-Based Materials. Journal of Materials in Civil Engineering , 26(10):04014071, ISSN 0899-1561, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000971.

Li, R., Sun, J., 2014. Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement. Construction and Building Materials, vol. 65, p.177-183, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2014.04.136.

Li, Y., Chen, B., 2013. Factors that affect the properties of magnesium phosphate cement. Construction and Building Materials, vol. 47, p.977-983, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2013.05.103.

Manso S., De Muynck W., Segura I., Aguado A., Steppe K., Boon N., De Belie N., 2014. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Science of The Total Environment, vol. 481, p.232-241, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2014.02.059.

Husarčíková M., 2019. Bio-active concrete tile, Bachelor Thesis; Czech Technical University in Prague, http://hdl.handle.net/10467/84197

Yang Q.B., Wu X., 1999. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cement and Concrete Research, vol. 29, p. 389-396, ISSN 0008-8846, https://doi.org/10.1016/S0008-8846(98)00230-0.

Lian C., Zhuge Y., Beecham S., 2011. The relationship between porosity and strength for porous concrete. Construction and Building Materials, vol. 25(11), p.4294-4298, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2011.05.005.

Husarčíková, M.; Štemberk, P.; Petřík, M.; Frantová, M. (2019) Bio-active concrete tile. In: Fibre Concrete 2019. Bristol: IOP Publishing Ltd, 2019. IOP Conference Series: Materials Science and Engineering. vol. 596. ISSN 1757-899X, https://doi.org/10.1088/1757-899X/596/1/012034.

Downloads

Published

2024-12-31 — Updated on 2025-01-06

Versions

Issue

Section

Articles

How to Cite

Aplicability of Magnesium Phosphate Cement for Bioreceptive Concrete Tiles. (2025). Stavební Obzor - Civil Engineering Journal, 33(4), 499-512. https://doi.org/10.14311/CEJ.2024.04.0034 (Original work published 2024)