Effects of coupled diffusion and buoyancy forces on three-dimensional MHD convective Williamson-Casson nanofluid flow: a numerical study

Authors

  • Bhargavi Samudrala Joginpally B. R. Engineering College, 500075 Bhaskar Nagar, India
  • Murali Gundagani Geethanjali College of Engineering and Technology, 501301 Cheeryal, India
  • K. Jayalakshmi Jawaharlal Nehru Technological University, 515002 Anantapuram, India

DOI:

https://doi.org/10.14311/AP.2025.65.0478

Keywords:

MHD, three-dimensional, Williamson fluid, Casson fluid, nanofluid, exponentially stretching sheet, microorganisms, coupled diffusion, buoyancy forces, magnetic field

Abstract

The study analyses how thermal diffusion, Dufour effect, thermophoretic forces, Brownian motion, buoyancy-driven convection, and magnetic fields collectively impact microbial behaviour in a convective MHD flow of a Williamson-Casson nanofluid past an exponentially stretched surface. Utilising Boussinesq’s approach, we examine the density fluctuations induced by temperature and concentration variations. Upon implementing convective surface boundary conditions for the sheet, the governing partial differential equations are transformed into ordinary differential equations and then resolved computationally using the MATLAB “bvp4c” method. This procedure is continued until the equations are resolved. The graphical representation illustrates the impact of essential flow parameters on temperature, concentration, main and secondary velocities, and microorganism profiles. To better understand the behaviour of these parameters, numerical calculations of the local Sherwood number, motile density, skin-friction coefficient, and Nusselt number are conducted. Tabular analysis is used to evaluate the impact of various parameters on fluid flow, including skin friction, the Nusselt number, motile density, and the Sherwood number. The data provided herein closely resemble those previously published by other authors. Ultimately, nanofluids have the potential for significant technical applications in the future. This is due to certain physical characteristics examined in this study. These attributes possess the capacity to enhance thermophysical characteristics and heat mass transport.

Downloads

Download data is not yet available.

References

S. Reddy, P. B. A. Reddy, A. J. Chamkha. MHD flow analysis with water-based CNT nanofluid over a non-linear inclined stretching/shrinking sheet considering heat generation. Chemical Engineering Transactions 71:1003–1008, 2018. https://doi.org/10.3303/CET1871168

A. Hussanan, I. Khan, M. R. Gorji, W. A. Khan. CNTS – water-based nanofluid over a stretching sheet. BioNanoScience 9(1):21–29, 2019. https://doi.org/10.1007/s12668-018-0592-6

B. Mahanthesh, B. J. Gireesha, I. L. Animasaun, et al. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Physica Scripta 94(8):085214, 2019. https://doi.org/10.1088/1402-4896/ab18ba

A. Tulu, W. Ibrahim. MHD slip flow of CNT-ethylene glycol nanofluid due to a stretchable rotating disk with Cattaneo-Christov heat flux model. Mathematical Problems in Engineering 2020(1):1374658, 2020. https://doi.org/10.1155/2020/1374658

K. Muhammad, T. Hayat, Alsaedi. OHAM analysis of Newtonian heating in mixed convective flow of CNTs over a stretched cylinder. Alexandria Engineering Journal 61(5):3697–3707, 2022. https://doi.org/10.1016/j.aej.2021.08.072

F. Shah, T. Hayat, A. Alsaedi. Entropy optimization in a fourth grade nanofluid flow over a stretchable Riga wall with thermal radiation and viscous dissipation. International Communications in Heat and Mass Transfer 127:105398, 2021. https://doi.org/10.1016/j.icheatmasstransfer.2021.105398

A. Salamah Aljaloud, L. Manai, I. Tlili. Flow of couple stress nanofluid due to stretching surface with applications of induced magnetic field and variable thermal conductivity. Case Studies in Thermal Engineering 57:104356, 2024. https://doi.org/10.1016/j.csite.2024.104356

M. Amjad, I. Zehra, S. Nadeem, et al. Influence of Lorentz force and induced magnetic field effects on Casson Micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surfaces and Interfaces 21:100766, 2020. https://doi.org/10.1016/j.surfin.2020.100766

M. I. Khan, F. Alzahrani. Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Mathematics and Computers in Simulation 185:47–61, 2021. https://doi.org/10.1016/j.matcom.2020.12.004

F. Shah, M. I. Khan, Y.-M. Chu, S. Kadry. Heat transfer analysis on MHD flow over a stretchable Riga wall considering entropy generation rate: A numerical study. Numerical Methods for Partial Differential Equations 40(1):e22694, 2024. https://doi.org/10.1002/num.22694

M. N. Othman, A. Jedi, N. A. A. Bakar. MHD stagnation point on nanofluid flow and heat transfer of carbon nanotube over a shrinking surface with heat sink effect. Molecules 26(24):7441, 2021. https://doi.org/10.3390/molecules26247441

A. Majeed, A. Zeeshan, T. Alam. Mathematical analysis of MHD CNT’s of rotating nanofluid flow over a permeable stretching surface. Arabian Journal for Science and Engineering 48(1):727–737, 2023. https://doi.org/10.1007/s13369-022-06871-w

N. A. A. Samat, N. Bachok, N. M. Arifin. Carbon nanotubes (CNTs) nanofluids flow and heat transfer under MHD effect over a moving surface. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 103(1):165–178, 2023. https://doi.org/10.37934/arfmts.103.1.165178

N. Vishnu Ganesh, A. K. Abdul Hakeem, B. Ganga. Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and ohmic dissipations effects. Ain Shams Engineering Journal 9(4):939–951, 2018. https://doi.org/10.1016/j.asej.2016.04.019

M. Jawad, M. K. Hameed, K. S. Nisar, A. H. Majeed. Darcy-Forchheimer flow of Maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and Nield boundary conditions. Case Studies in Thermal Engineering 44:102830, 2023. https://doi.org/10.1016/j.csite.2023.102830

P. Agarwal, R. Jain, K. Loganathan. Thermally radiative flow of MHD Powell-Eyring nanofluid over an exponential stretching sheet with swimming microorganisms and viscous dissipation: A numerical computation. International Journal of Thermofluids 23:100773, 2024. https://doi.org/10.1016/j.ijft.2024.100773

P. Choudhary, S. Choudhary, K. Jat, et al. Impacts of unsteady MHD hybrid nanofluid over a non-linear stretchable porous sheet with thermal radiation and gyrotatic microorganisms. International Journal of Thermofluids 23:100788, 2024. https://doi.org/10.1016/j.ijft.2024.100788

P. Rana, M. Basavarajappa. Bioconvection dynamics in rotating and stationary cone-disk systems. Physics of Fluids 36(11):112038, 2024. https://doi.org/10.1063/5.0239637

M. R. Moradi, K. Hosseinzadeh, A. Hasibi, D. D. Ganji. Hydrothermal study on nano-bioconvective fluid flow over a vertical plate under the effect of magnetic field. Numerical Heat Transfer, Part B: Fundamentals 85(4):469–483, 2024. https://doi.org/10.1080/10407790.2023.2241632

E. A. Algehyne, F. M. Alamrani, S. A. Lone, et al. Numerical exploration of radiative heat transfers in a magneto bioconvection Maxwell fluid passing through a spinning disk. Advances in Mechanical Engineering 16(10):16878132241282017, 2024. https://doi.org/10.1177/16878132241282017

M. R. Khan, V. Puneeth, M. K. Alaoui, A. O. Almagrabi. Numerical simulation of unsteady MHD bio-convective flow of viscous nanofluid through a stretching surface. Case Studies in Thermal Engineering 53:103830, 2024. https://doi.org/10.1016/j.csite.2023.103830

Y. Wu, M. Chaudhry, N. Maqbool, et al. Entropy generation in radiative motion of tangent hyperbolic nanofluid in the presence of gyrotactic microorganisms and activation energy. Frontiers in Physics 12:1409318, 2024. https://doi.org/10.3389/fphy.2024.1409318

M. Chaudhry, M. A. Basit, M. Imran, et al. Numerical analysis of mathematical model of nanofluid flow through stagnation point involving thermal radiation, activation energy, and living organisms. AIP Advances 15(1):015220, 2025. https://doi.org/10.1063/5.0249122

S. R. Mishra, T. M. Agbaje, R. Baithalu, S. Panda. Spectral quasi-linearization approach for the swimming of motile microorganisms on the bio-convection Casson nanofluid flow over a rotating circular disk. Numerical Heat Transfer, Part B: Fundamentals 86(9):3039–3065, 2025. https://doi.org/10.1080/10407790.2024.2352857

Y. Aboel-Magd, A. Basem, U. Farooq, et al. Computational modeling of thermal radiation and activation energy effects in Casson nanofluid flow with bioconvection and microorganisms over a disk. International Journal of Thermofluids 23:100735, 2024. https://doi.org/10.1016/j.ijft.2024.100735

N. S. Khan, U. W. Humphries, W. Kumam, et al. Bioconvection Casson nanoliquid film sprayed on a stretching cylinder in the portfolio of homogeneousheterogeneous chemical reactions. ZAMM – Journal of Applied Mathematics and Mechanics 102(5):e202000222, 2022. https://doi.org/10.1002/zamm.202000222

N. S. Khan, S. Sriyab, A. Kaewkhao, E. Thawinan. Hall current effect in bioconvection Oldroyd-B nanofluid flow through a porous medium with Cattaneo-Christov heat and mass flux theory. Scientific Reports 12(1):19821, 2022. https://doi.org/10.1038/s41598-022-23932-0

A. M. Rashad, H. A. Nabwey. Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. Journal of the Taiwan Institute of Chemical Engineers 99:9–17, 2019. https://doi.org/10.1016/j.jtice.2019.02.035

M. Ferdows, K. Zaimi, A. M. Rashad, H. A. Nabwey. MHD bioconvection flow and heat transfer of nanofluid through an exponentially stretchable sheet. Symmetry 12(5):692, 2020. https://doi.org/10.3390/sym12050692

H. A. Nabwey, S. I. Alshber, A. M. Rashad, A. E. N. Mahdy. Influence of bioconvection and chemical reaction on Magneto-Carreau nanofluid flow through an inclined cylinder. Mathematics 10(3):504, 2022. https://doi.org/10.3390/math10030504

D. R. Kirubaharan, A. D. Subhashini, M. Gundagani. Study of three dimensional Casson-nanofluid flow due to a linear porous stretching sheet in the presence of double diffusion effects. Advances in Systems Science and Applications 24(3):90–103, 2024. https://doi.org/10.25728/assa.2024.2024.03.1539

M. Gundagani, G. Deepa, J. V. Madhu, et al. Three dimensional chemically reacting Oldroyd-B fluid + nanofluid flow in presence of thermophoresis and Brownian motion effects. Discontinuity, Nonlinearity, and Complexity 14(2):373–388, 2025. https://doi.org/10.5890/DNC.2025.06.010

P. K. Tanuku, L. P. Mamidi, M. Gundagani. Modelling and analysis of three-dimensional chemically reacting, radiating Casson-nanofluid flow: Thermophoresis and Brownian motion effects. Acta Polytechnica 64(5):455–463, 2024. https://doi.org/10.14311/AP.2024.64.0455

M. Gundagani, P. Lakshmi, M. Amarnath, et al. Three-dimensional MHD flow of a radiative Eyring-Powell nanofluid: Exploring Hall effects and heat transfer. Theoretical and Mathematical Physics 223(3):1070–1086, 2025. https://doi.org/10.1134/S0040577925060170

M. Gundagani, J. Venkata Madhu, G. Deepa, et al. Hall current and MHD impacts on a 3D Maxwell nanofluid flow across a porous stretching surface. Theoretical and Mathematical Physics 223(3):899–914, 2025. https://doi.org/10.1134/S0040577925060030

P. Tanuku, L. Mamidi, M. Gundagani. Modelling and analysis of three-dimensional Maxwell-nanofluid flow over a bi-directional stretching surface in the presence of a magnetic field. International Journal for Engineering Modelling 38(1):53–72, 2025. https://doi.org/10.31534/engmod.2025.1.ri.04d

S. Sheri, M. Gundagani, M. P. Karanamu. Analysis of heat and mass transfer effects on an isothermal vertical oscillating plate. Walailak Journal of Science and Technology (WJST) 9(4):407–415, 2012. [38] M. Gundagani, J. Venkata Madhu, G. Deepa, et al. Three-dimensional Oldroyd-B fluid flow past a stretching surface with magnetic field, nanofluid particles and Cattaneo-Christov double diffusion effects. Johnson Matthey Technology Review 69(2):299–320, 2025. https://doi.org/10.1595/205651325X17375408788409

M. Gundagani, V. Javvaji, D. Gadipalli, et al. A numerical study on MHD 3-D Casson-nanofluid flow past an exponentially stretching sheet with double Cattaneo-Christov diffusion effects. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 41(2):21, 2025. https://doi.org/10.23967/j.rimni.2025.10.63195

M. Gundagani, T. K. Tak, S. B. Krishnan, et al. Hall current and ion slip effects on 3D MHD nanofluid flow of Eyring-Powell fluid with gyrotactic microorganisms. Advances in Systems Science and Applications 2024(4):9–27, 2024. https://doi.org/10.25728/assa.2024.2024.4.1538

B. R. Nagasmitha, V. Nagendramma, N. Ahmed, et al. Analytical study of nonlinear behavior and convection patterns in Darcy-Brinkman porous medium with Maxwell-Cattaneo ferroconvection. Journal of Mines, Metals and Fuels 73(2):437–445, 2025. https://doi.org/10.18311/jmmf/2025/47828

F. Mebarek-Oudina, G. Dharmaiah, J. L. R. Prasad, et al. Thermal and flow dynamics of magnetohydrodynamic Burgers’ fluid induced by a stretching cylinder with internal heat generation and absorption. International Journal of Thermofluids 25:100986, 2025. https://doi.org/10.1016/j.ijft.2024.100986

M. A. Kumar, F. Mebarek-Oudina, P. Mangathai, et al. The impact of soret dufour and radiation on the laminar flow of a rotating liquid past a porous plate via chemical reaction. Modern Physics Letters B 39(10):2450458, 2025. https://doi.org/10.1142/S021798492450458X

F. Mebarek-Oudina, M. Bouselsal, R. Djebali, et al. Thermal performance of MgO-SWCNT/water hybrid nanofluids in a zigzag walled cavity with differently shaped obstacles. Modern Physics Letters B 39(29):2550163, 2025. https://doi.org/10.1142/S0217984925501635

J. Raza, F. Mebarek-Oudina, H. Ali, I. E. Sarris. Slip effects on Casson nanofluid over a stretching sheet with activation energy: RSM analysis. Frontiers in Heat and Mass Transfer 22(4):1017–1041, 2024. https://doi.org/10.32604/fhmt.2024.052749

B. O. Said, F. Mebarek-Oudina, M. A. Medebber. Magneto-hydro-convective nanofluid flow in porous square enclosure. Frontiers in Heat and Mass Transfer 22(5):1343–1360, 2024. https://doi.org/10.32604/fhmt.2024.054164

K. Ramesh, F. Mebarek-Oudina, B. Souayeh (eds.). Mathematical modelling of fluid dynamics and nanofluids. CRC Press, 1st edn., 2023. https://doi.org/10.1201/9781003299608

F. Mebarek-Oudina (ed.). CFD simulation: Thermo-Fluids and nanofluids in engineering and biomedicine. De Gruyter, Berlin, Boston, 2025. https://doi.org/10.1515/9783111405094

A. Mezaache, F. Mebarek-Oudina, H. Vaidya, Y. Fouad. Heat transfer analysis of nanofluid flow with entropy generation in a corrugated heat exchanger channel partially filled with porous medium. Heat Transfer 53(8):4625–4647, 2024. https://doi.org/10.1002/HTJ23149

V. Makkar, P. Batra. Numerical simulation of MHD convective nanofluid flow with buoyancy forces over three dimensional exponential stretching surface. Materials Today: Proceedings 52:810–817, 2022. https://doi.org/10.1016/j.matpr.2021.10.169

Downloads

Published

2025-09-10

Issue

Section

Articles

How to Cite

Samudrala, B., Gundagani, M., & Jayalakshmi, K. (2025). Effects of coupled diffusion and buoyancy forces on three-dimensional MHD convective Williamson-Casson nanofluid flow: a numerical study. Acta Polytechnica, 65(4), 478-492. https://doi.org/10.14311/AP.2025.65.0478